scispace - formally typeset
Search or ask a question
Journal ArticleDOI

INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

TL;DR: In this paper, the authors reported WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency.
Abstract: Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.
Citations
More filters
Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: A measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths is reported, sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere and rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide.
Abstract: Recent surveys have revealed that planets intermediate in size between Earth and Neptune (‘super-Earths’) are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the atmosphere of the super-Earth archetype GJ 1214b, but previous observations did not have sufficient precision to distinguish between two interpretations for the atmosphere. The planet’s atmosphere could be dominated by relatively heavy molecules, such as water (for example, a 100 per cent water vapour composition), or it could contain high-altitude clouds that obscure its lower layers. Here we report a measurement of the transmission spectrum of GJ 1214b at near-infrared wavelengths that definitively resolves this ambiguity. The data, obtained with the Hubble Space Telescope, are sufficiently precise to detect absorption features from a high mean-molecular-mass atmosphere. The observed spectrum, however, is featureless. We rule out cloud-free atmospheric models with compositions dominated by water, methane, carbon monoxide, nitrogen or carbon dioxide at greater than 5σ confidence. The planet’s atmosphere must contain clouds to be consistent with the data.

984 citations

Journal ArticleDOI
07 Jan 2016-Nature
TL;DR: The difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes.
Abstract: Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

955 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets.
Abstract: We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high Fp and high Fp/F*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

473 citations

Journal ArticleDOI
TL;DR: In this paper, the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b was determined based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope.
Abstract: The water abundance in a planetary atmosphere provides a key constraint on the planet’s primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We nd the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0:4 3:5 solar at 1 condence). The metallicity of WASP-43b’s atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses. Subject headings: planets and satellites: atmospheres | planets and satellites: composition | planets and satellites: individual: WASP-43b

432 citations

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: Observations of GJ 436b’s atmosphere obtained during transit indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ.
Abstract: GJ 436b is a warm—approximately 800 kelvin—exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10^5 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b’s atmosphere obtained during transit. The data indicate that the planet’s transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.

358 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening are presented for the HST observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207+-0.0003.
Abstract: We present exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening. In the limit that the planet radius is less than a tenth of the stellar radius, we show that the exact lightcurve can be well approximated by assuming the region of the star blocked by the planet has constant surface brightness. We apply these results to the HST observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207+-0.0003. These formulae give a fast and accurate means of computing lightcurves using limb-darkening coefficients from model atmospheres which should aid in the detection, simulation, and parameter fitting of planetary transits.

2,370 citations

Journal ArticleDOI
TL;DR: In this paper, the exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening were presented, and the authors applied these results to the Hubble Space Telescope observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207 ± 0.0003.
Abstract: We present exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening. In the limit that the planet radius is less than a tenth of the stellar radius, we show that the exact light curve can be well approximated by assuming the region of the star blocked by the planet has constant surface brightness. We apply these results to the Hubble Space Telescope observations of HD 209458, showing that the ratio of the planetary to stellar radii is 0.1207 ± 0.0003. These formulae give a fast and accurate means of computing light curves using limb-darkening coefficients from model atmospheres that should aid in the detection, simulation, and parameter fitting of planetary transits.

2,253 citations

Journal ArticleDOI
TL;DR: High-precision, high-cadence photometric measurements of the star HD 209458 are reported, which is known from radial velocity measurements to have a planetary-mass companion in a close orbit and the detailed shape of the transit curve due to both the limb darkening of thestar and the finite size of the planet is clearly evident.
Abstract: We report high-precision, high-cadence photometric measurements of the star HD 209458, which is known from radial velocity measurements to have a planetary-mass companion in a close orbit. We detect two separate transit events at times that are consistent with the radial velocity measurements. In both cases, the detailed shape of the transit curve due to both the limb darkening of the star and the finite size of the planet is clearly evident. Assuming stellar parameters of 1.1 R⊙ and 1.1 M⊙, we find that the data are best interpreted as a gas giant with a radius of 1.27 ± 0.02 RJup in an orbit with an inclination of 871 ± 02. We present values for the planetary surface gravity, escape velocity, and average density and discuss the numerous observations that are warranted now that a planet is known to transit the disk of its parent star.

1,494 citations

Journal ArticleDOI
TL;DR: In this paper, high-precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm, were reported.
Abstract: We report high-precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm. We find that the photometric dimming during transit in a bandpass centered on the sodium feature is deeper by (2.32 ± 0.57) × 10-4 relative to simultaneous observations of the transit in adjacent bands. We interpret this additional dimming as absorption from sodium in the planetary atmosphere, as recently predicted from several theoretical modeling efforts. Our model for a cloudless planetary atmosphere with a solar abundance of sodium in atomic form predicts more sodium absorption than we observe. There are several possibilities that may account for this reduced amplitude, including reaction of atomic sodium into molecular gases and/or condensates, photoionization of sodium by the stellar flux, a low primordial abundance of sodium, and the presence of clouds high in the atmosphere.

1,300 citations

Journal ArticleDOI
TL;DR: In this article, a more general differential equation was used, which now takes into account local gravity variations and the effects of convection, which turn out to be very significant for cool stars.
Abstract: Aims The complex physics of close binary stars is made even more challenging by the proximity effects that affect it Understanding the influence of these proximity effects is one of the most important tasks in theoretical stellar astrophysics It is crucial to know how the specific intensity is distributed over the stellar disk for a correct modelling of the light curves of eclipsing binaries and planetary transits To provide theoretical input for light curve modelling codes, we present new calculations of gravity- and limb-darkening coefficients for a wide range of effective temperatures, gravities, metallicities, and microturbulent velocities Methods We computed limb-darkening coefficients for several atmosphere models, which cover the transmission curves of the Kepler , CoRoT, and Spitzer space missions as well as more widely used passbands (Stromgren, Johnson-Cousins, Sloan) In addition to these computations, which were made adopting the least-square method, we also performed calculations for the bi-parametric approximations by adopting the flux conservation method to provide users with an additional tool to estimate the theoretical error bars To facilitate the modelling of the effects of tidal and rotational distortions, we computed the gravity-darkening coefficients y (λ ) using the same models of stellar atmospheres as for the limb-darkening Compared to previous work, a more general differential equation was used, which now takes into account local gravity variations and the effects of convection Results The limb-darkening coefficients were computed with a higher numerical resolution (100 μ points instead of 15 or 17, as is often used in the ATLAS models), and five equations were used to describe the specific intensities (linear, quadratic, root-square, logarithmic, and a 4-coefficient law) Concerning the gravity-darkening coefficients, the influence of the local gravity on y (λ ) is shown as well as the effects of convection, which turn out to be very significant for cool stars The results are tabulated for log g ′s ranging from 00 to 50, –50 ≤ log [M/H] ≤ +1, 2000 K ≤ T eff ≤ 50 000 K and for five values of the microturbulent velocity ATLAS and PHOENIX plane-parallel atmosphere models were used for all computations

1,199 citations

Related Papers (5)