scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel,Mytilus edulis(L.)

30 May 2008-Environmental Science & Technology (American Chemical Society)-Vol. 42, Iss: 13, pp 5026-5031
TL;DR: The data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases and further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
Abstract: Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
Citations
More filters
Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations


Cites background from "Ingested Microscopic Plastic Transl..."

  • ...Microscopic fragments are also be taken up from the gut into other body tissues (Browne et al. 2008)....

    [...]

Journal ArticleDOI
TL;DR: Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota.

3,643 citations


Cites background or methods from "Ingested Microscopic Plastic Transl..."

  • ...Observing microplastic ingestion in the wild is methodologically challenging (Browne et al., 2008), but an increasing number of studies are reporting microplastic ingestion throughout the foodchain....

    [...]

  • ...Translocation of polystyrene microspheres was first shown in rodents and humans, and has also been demonstrated for mussels using histological techniques and fluorescence microscopy (Browne et al., 2008)....

    [...]

  • ...Microspheres were present in the circulatory system for up to 48 days after exposure, although there was no apparent sub-lethal impact (measured as oxidative status and phagocytic ability of the haemocytes) (Browne et al., 2008)....

    [...]

  • ...Alternatively, microplastic ingestion may result from eating lower trophic organisms that have themselves consumed microplastics (Browne et al., 2008; Fendall and Sewell, 2009)....

    [...]

Journal ArticleDOI
TL;DR: This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment and suggests standardized sampling procedures which allow the spatiotemporal comparison ofmicroplastic abundance across marine environments.
Abstract: This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are “items per m2” ...

3,119 citations

Journal ArticleDOI
TL;DR: It is shown that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates.
Abstract: Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

2,903 citations

References
More filters
Journal ArticleDOI
07 May 2004-Science
TL;DR: It is shown that microscopic plastic fragments and fibers are also widespread in the marine environment and may persist for centuries.
Abstract: Millions of metric tons of plastic are produced annually. Countless large items of plastic debris are accumulating in marine habitats worldwide and may persist for centuries ([ 1 ][1]–[ 4 ][2]). Here we show that microscopic plastic fragments and fibers ([Fig. 1A][3]) are also widespread in the

4,067 citations

Journal ArticleDOI
TL;DR: The deleterious effects of plastic debris on the marine environment were reviewed by bringing together most of the literature published so far on the topic, and a variety of approaches are urgently required to mitigate the problem.

3,084 citations

Journal ArticleDOI
TL;DR: Field adsorption experiments using PP virgin pellets demonstrated significant and steady increase in PCBs and DDE concentrations throughout the six-day experiment, indicating that the source of PCBs, DDE, and nonylphenols is ambient seawater and that adsor adaptation to pellet surfaces is the mechanism of enrichment.
Abstract: Plastic resin pellets (small granules 0.1−0.5 centimeters in diameter) are widely distributed in the ocean all over the world. They are an industrial raw material for the plastic industry and are unintentionally released to the environment both during manufacturing and transport. They are sometimes ingested by seabirds and other marine organisms, and their adverse effects on organisms are a concern. In the present study, PCBs, DDE, and nonylphenols (NP) were detected in polypropylene (PP) resin pellets collected from four Japanese coasts. Concentrations of PCBs (4−117 ng/g), DDE (0.16−3.1 ng/g), and NP (0.13−16 μg/g) varied among the sampling sites. These concentrations were comparable to those for suspended particles and bottom sediments collected from the same area as the pellets. Field adsorption experiments using PP virgin pellets demonstrated significant and steady increase in PCBs and DDE concentrations throughout the six-day experiment, indicating that the source of PCBs and DDE is ambient seawater...

1,481 citations

Journal ArticleDOI
TL;DR: Plastic debris may be important agents in the transport of hydrophobic contaminants to sediment-dwelling organisms, and the addition of as little as 1 microg of contaminated polyethylene to a gram of sediment would give a significant increase in phenanthrene accumulation by A. marina.
Abstract: Plastic debris litters marine and terrestrial habitats worldwide. It is ingested by numerous species of animals, causing deleterious physical effects. High concentrations of hydrophobic organic contaminants have also been measured on plastic debris collected from the environment, but the fate of these contaminants is poorly understood. Here, we examine the uptake and subsequent release of phenanthrene by three plastics. Equilibrium distribution coefficients for sorption of phenanthrene from seawater onto the plastics varied by more than an order of magnitude (polyethylene >> polypropylene > polyvinyl chloride (PVC)). In all cases, sorption to plastics greatly exceeded sorption to two natural sediments. Desorption rates of phenanthrene from the plastics or sediments back into solution spanned several orders of magnitude. As expected, desorption occurred more rapidly from the sediments than from the plastics. Using the equilibrium partitioning method, the effects of adding very small quantities of plastic with sorbed phenanthrene to sediment inhabited by the lugworm (Arenicola marina) were evaluated. We estimate that the addition of as little as 1 microg of contaminated polyethylene to a gram of sediment would give a significant increase in phenanthrene accumulation by A. marina. Thus, plastics may be important agents in the transport of hydrophobic contaminants to sediment-dwelling organisms.

1,012 citations

Journal ArticleDOI
17 Nov 1972-Science
TL;DR: White, opaque spherules are selectively consumed by 8 species of fish out of 14 species examined, and a chaetognath, and ingestion of the plastic may lead to intestinal blockage in smaller fish.
Abstract: Polystyrene spherules averaging 0.5 millimeter in diameter (range 0.1 to 2 millimeters) are abundant in the coastal waters of southern New England. Two types are present, a crystalline (clear) form and a white, opaque form with pigmentation resulting from a diene rubber. The spherules have bacteria on their surfaces and contain polychlorinated biphenyls, apparently absorbed from ambient seawater, in a concentration of 5 parts per million. White, opaque spherules are selectively consumed by 8 species of fish out of 14 species examined, and a chaetognath. Ingestion of the plastic may lead to intestinal blockage in smaller fish.

800 citations