scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ingestion and transfer of microplastics in the planktonic food web.

01 Feb 2014-Environmental Pollution (Environ Pollut)-Vol. 185, pp 77-83
TL;DR: This study shows for the first time the potential of plastic microparticle transfer via planktonic organisms from one trophic level (mesozooplankton) to a higher level (macrozooplankton).
About: This article is published in Environmental Pollution.The article was published on 2014-02-01. It has received 1136 citations till now. The article focuses on the topics: Zooplankton & Copepod.
Citations
More filters
Journal ArticleDOI
10 Dec 2014-PLOS ONE
TL;DR: The total number of plastic particles and their weight floating in the world's oceans is estimated from 24 expeditions across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows and visual survey transects of large plastic debris.
Abstract: Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world’s oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N5680) and visual survey transects of large plastic debris (N5891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic ,4.75 mm and meso- and macroplastic .4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove ,4.75 mm plastic particles from the ocean surface.

3,091 citations

Journal ArticleDOI
TL;DR: This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, draws on relevant studies from other fields including nanotechnology, agriculture and waste management.

1,864 citations


Cites background from "Ingestion and transfer of microplas..."

  • ...If ingested by lower tropic level organisms, this may 590 support further transfer and accumulation along food chains (Cole et al., 2013; Farrell and Nelson, 591 2013; Setälä et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: The issue of microplastics in freshwater systems is reviewed to summarise current understanding, identify knowledge gaps and suggest future research priorities.

1,688 citations

Journal ArticleDOI
TL;DR: This review assesses the relevance of selected characteristics of plastics that composes the microplastics, to their role as a pollutant with potentially serious ecological impacts.

1,151 citations

Journal ArticleDOI
TL;DR: Considering the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.
Abstract: Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk.

1,001 citations


Additional excerpts

  • ...reported for the copepod Eurytemora affinis [147]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations


"Ingestion and transfer of microplas..." refers background in this paper

  • ...Marine debris is a growing global problem posing a threat to a variety of marine organisms through the ingestion of particles and entanglement (Andrady, 2011; Laist, 1987)....

    [...]

Journal ArticleDOI
07 May 2004-Science
TL;DR: It is shown that microscopic plastic fragments and fibers are also widespread in the marine environment and may persist for centuries.
Abstract: Millions of metric tons of plastic are produced annually. Countless large items of plastic debris are accumulating in marine habitats worldwide and may persist for centuries ([ 1 ][1]–[ 4 ][2]). Here we show that microscopic plastic fragments and fibers ([Fig. 1A][3]) are also widespread in the

4,067 citations


"Ingestion and transfer of microplas..." refers background in this paper

  • ...Studies carried out during the last decade have, however, pointed out the commonness of plastic microparticles, the so-called microplastics in the marine environment (Magnusson and Noren, 2011; Moore et al., 2001, 2002; Thomson et al., 2004)....

    [...]

  • ...Similarly, laboratory experiments have shown that nano-sized plastic particles may be ingested by benthic invertebrates, such as lugworms, barnacles, amphipods andmussels (Browne et al., 2008; Thomson et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: The deleterious effects of plastic debris on the marine environment were reviewed by bringing together most of the literature published so far on the topic, and a variety of approaches are urgently required to mitigate the problem.

3,084 citations


"Ingestion and transfer of microplas..." refers background in this paper

  • ...The majority of the studies and reports on marine debris have focused on relatively large debris which is hazardous to marine mammals, birds or fish (Derraik, 2002)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that microplastics are ingested by, and may impact upon, zooplankton, and imply that marine microplastic debris can negatively impact upon zoopLankton function and health.
Abstract: Small plastic detritus, termed “microplastics”, are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish, and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bioimaging techniques to document ingestion, egestion, and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7–30.6 μm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets lade...

1,832 citations

Journal ArticleDOI
TL;DR: The data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases and further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
Abstract: Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.

1,708 citations