scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Inheritance of DNA methylation differences in the mangrove Rhizophora mangle.

TL;DR: In this paper, a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) was used to assess one type of nongenetic variation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida.
Abstract: The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR:
Abstract: Several reduced‐representation bisulfite sequencing methods have been developed in recent years to determine cytosine methylation de novo in nonmodel species. Here, we present epiGBS2, a laboratory protocol based on epiGBS with a revised and user‐friendly bioinformatics pipeline for a wide range of species with or without a reference genome. epiGBS2 is cost‐ and time‐efficient and the computational workflow is designed in a user‐friendly and reproducible manner. The library protocol allows a flexible choice of restriction enzymes and a double digest. The bioinformatics pipeline was integrated in the Snakemake workflow management system, which makes the pipeline easy to execute and modular, and parameter settings for important computational steps flexible. We implemented bismark for alignment and methylation analysis and we preprocessed alignment files by double masking to enable single nucleotide polymorphism calling with Freebayes (epiFreebayes). The performance of several critical steps in epiGBS2 was evaluated against baseline data sets from Arabidopsis thaliana and great tit (Parus major), which confirmed its overall good performance. We provide a detailed description of the laboratory protocol and an extensive manual of the bioinformatics pipeline, which is publicly accessible on github (https://github.com/nioo‐knaw/epiGBS2) and zenodo (https://doi.org/10.5281/zenodo.4764652).

10 citations

Journal ArticleDOI
01 Jan 2022-iScience
TL;DR: In this article , the authors provide up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits, including morphological, anatomical and physio-biochemical adaptations.

10 citations

Journal ArticleDOI
TL;DR: The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems as mentioned in this paper, and it provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level.
Abstract: The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.

6 citations

Journal ArticleDOI
TL;DR: It is argued that the observed epigenetic stress memory is likely caused by stable transgenerational persistence of high temperature-induced DNA methylation variants across multiple clonal generations, and suggests potential for long-term modulation of stress responses in asexual plants and vegetatively propagated crops.
Abstract: While some DNA methylation variants are transgenerationally stable in plants, DNA methylation modifications that are specifically induced by environmental exposure are typically transient and subject to resetting in germ lines, limiting the potential for transgenerational epigenetics stress memory. Asexual reproduction circumvents germlines, and may be more conducive to long-term memory and inheritance of epigenetic marks. This, however, has been poorly explored. Taking advantage of the rapid clonal reproduction of the common duckweed Lemna minor, we tested the hypothesis that a long-term, transgenerational stress memory from exposure to high temperature can be detected in DNA methylation profiles. Using a reduced representation bisulfite sequencing approach (epiGBS), we show that high temperature stress induces DNA hypermethylation at many cytosines in CG and CHG contexts but not in CHH. In addition, a subset of the temperature responsive CHG cytosines, showed differential DNA methylation between in lineages exposed to 30°C and 24°C, 3-12 clonal generations after subsequent culturing in a common environment, demonstrating a memory effect of stress that persists over many clonal generations and that is reflected in DNA methylation. Structural annotation revealed that this memory effect in CHG methylation was enriched in TEs. We argue that the observed epigenetic stress memory is likely caused by stable transgenerational persistence of high temperature-induced DNA methylation variants across multiple clonal generations. To the extent that such epigenetic memory has functional consequences for gene expression and phenotypes, this result suggests potential for long-term modulation of stress responses in asexual plants and vegetatively propagated crops.

4 citations

Journal ArticleDOI
TL;DR: The present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Abstract: Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: DIAMOND is introduced, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.
Abstract: The alignment of sequencing reads against a protein reference database is a major computational bottleneck in metagenomics and data-intensive evolutionary projects. Although recent tools offer improved performance over the gold standard BLASTX, they exhibit only a modest speedup or low sensitivity. We introduce DIAMOND, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.

7,164 citations

Journal ArticleDOI
TL;DR: The package adegenet for the R software is dedicated to the multivariate analysis of genetic markers by implementing formal classes and functions to manipulate and analyse genetic markers.
Abstract: Summary: The package adegenet for the R software is dedicated to the multivariate analysis of genetic markers. It extends the ade4 package of multivariate methods by implementing formal classes and functions to manipulate and analyse genetic markers. Data can be imported from common population genetics software and exported to other software and R packages. adegenet also implements standard population genetics tools along with more original approaches for spatial genetics and hybridization. Availability: Stable version is available from CRAN: http://cran. r-project.org/mirrors.html. Development version is available from adegenet website: http://adegenet.r-forge.r-project.org/. Both versions can be installed directly from R. adegenet is distributed under the GNU General Public Licence (v.2). Contact: jombart@biomserv.univ-lyon1.fr Supplementary information: Supplementary data are available at Bioinformatics online.

5,690 citations

Journal ArticleDOI
TL;DR: In this paper, the significance level for a test of Hardy-Weinberg proportions (HWP) is estimated for loci with more than a few alleles, and two algorithms are proposed.
Abstract: SUMMARY The Hardy-Weinberg law plays an important role in the field of population genetics and often serves as a basis for genetic inference. Because of its importance, much attention has been devoted to tests of Hardy-Weinberg proportions (HWP) over the decades. It has long been recognized that largesample goodness-of-fit tests can sometimes lead to spurious results when the sample size and/or some genotypic frequencies are small. Although a complete enumeration algorithm for the exact test has been proposed, it is not of practical use for loci with more than a few alleles due to the amount of computation required. We propose two algorithms to estimate the significance level for a test of HWP. The algorithms are easily applicable to loci with multiple alleles. Both are remarkably simple and computationally fast. Relative efficiency and merits of the two algorithms are compared. Guidelines regarding their usage are given. Numerical examples are given to illustrate the practicality of the algorithms.

5,075 citations

Journal ArticleDOI
TL;DR: The theory of the duality diagram is presented and its implementation in ade4 is discussed, which follows the tradition of the French school of "Analyse des Donnees" and is based on the use of theDuality diagram.
Abstract: Multivariate analyses are well known and widely used to identify and understand structures of ecological communities. The ade4 package for the R statistical environment proposes a great number of multivariate methods. Its implementation follows the tradition of the French school of "Analyse des Donnees" and is based on the use of the duality diagram. We present the theory of the duality diagram and discuss its implementation in ade4. Classes and main functions are presented. An example is given to illustrate the ade4 philosophy.

4,612 citations

Journal ArticleDOI
01 Oct 2008-Genetics
TL;DR: It is shown that the inclusion of isolated populations that underwent a strong bottleneck can lead to a high rate of false positives, and it is demonstrated that it is possible to avoid them by carefully choosing the populations that should be included in the analysis.
Abstract: Identifying loci under natural selection from genomic surveys is of great interest in different research areas. Commonly used methods to separate neutral effects from adaptive effects are based on locus-specific population differentiation coefficients to identify outliers. Here we extend such an approach to estimate directly the probability that each locus is subject to selection using a Bayesian method. We also extend it to allow the use of dominant markers like AFLPs. It has been shown that this model is robust to complex demographic scenarios for neutral genetic differentiation. Here we show that the inclusion of isolated populations that underwent a strong bottleneck can lead to a high rate of false positives. Nevertheless, we demonstrate that it is possible to avoid them by carefully choosing the populations that should be included in the analysis. We analyze two previously published data sets: a human data set of codominant markers and a Littorina saxatilis data set of dominant markers. We also perform a detailed sensitivity study to compare the power of the method using amplified fragment length polymorphism (AFLP), SNP, and microsatellite markers. The method has been implemented in a new software available at our website (http://www-leca.ujf-grenoble.fr/logiciels.htm).

2,366 citations