scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Inhibition of HSP90 molecular chaperones: moving into the clinic.

01 Aug 2013-Lancet Oncology (Elsevier)-Vol. 14, Iss: 9
TL;DR: The current status of HSP90 inhibitors in clinical development is reviewed, including geldanamycin derivatives, resorcinol derivatives, purine analogues, and other synthetic inhibitors.
Abstract: Summary Heat shock protein 90 (HSP90) is a molecular chaperone that is crucial for the stability and function of many proteins essential for cell survival. Many oncogenes, including tyrosine kinases, transcription factors, and cell-cycle regulatory proteins, are client proteins of HSP90. Inhibition of HSP90 causes client protein degradation via the ubiquitin–proteasome pathway, and is a mechanism that might simultaneously downregulate several redundant pathways crucial for cell viability and tumour development. HSP90 inhibitors are currently being developed as anticancer agents, and have shown early promising results in molecularly defined subgroups of solid tumours (eg, ALK-rearranged non-small-cell lung cancer and HER2-amplified breast cancer) and some haematological malignancies (eg, multiple myeloma). Here, we review the current status of HSP90 inhibitors in clinical development, including geldanamycin derivatives, resorcinol derivatives, purine analogues, and other synthetic inhibitors. We also discuss novel strategies and future perspectives on how to optimise the therapeutic potential of this exciting new class of drugs.
Citations
More filters
Journal ArticleDOI
TL;DR: The physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds are described.
Abstract: Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

892 citations

Journal ArticleDOI
TL;DR: It is now clear that aging and cancer development either share or diverge in several disease mechanisms, and aging can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear.
Abstract: Aging is the inevitable time-dependent decline in physiological organ function and is a major risk factor for cancer development. Due to advances in health care, hygiene control and food availability, life expectancy is increasing and the population in most developed countries is shifting to an increasing proportion of people at a cancer susceptible age. Mechanisms of aging are also found to occur in carcinogenesis, albeit with shared or divergent end-results. It is now clear that aging and cancer development either share or diverge in several disease mechanisms. Such mechanisms include the role of genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, decreased nutrient sensing and altered metabolism, but also cellular senescence and stem cell function. Cancer cells and aged cells are also fundamentally opposite, as cancer cells can be thought of as hyperactive cells with advantageous mutations, rapid cell division and increased energy consumption, while aged cells are hypoactive with accumulated disadvantageous mutations, cell division inability and a decreased ability for energy production and consumption. Nonetheless, aging and cancer are tightly interconnected and many of the same strategies and drugs may be used to target both, while in other cases antagonistic pleiotrophy come into effect and inhibition of one can be the activation of the other. Cancer can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear. Better understanding of the shared and divergent pathways of aging and cancer is needed.

220 citations


Cites background from "Inhibition of HSP90 molecular chape..."

  • ...These can be used in monotherapy or in combination with chemotherapy and have shown striking potential against subgroups of non-small cell lung cancer, and promising results in breast cancer, gastrointestinal stromal tumors (GISTs), melanoma and some hematological malignancies [80]....

    [...]

Journal ArticleDOI
TL;DR: The lncGLCC1 is significantly upregulated under glucose starvation in CRC cells, supporting cell survival and proliferation by enhancing glycolysis and correlates with poor prognosis in this cancer.
Abstract: Long non-coding RNAs (lncRNAs) contribute to colorectal cancer (CRC). However, the role of lncRNAs in CRC metabolism, especially glucose metabolism remains largely unknown. In this study, we identify a lncRNA, GLCC1, which is significantly upregulated under glucose starvation in CRC cells, supporting cell survival and proliferation by enhancing glycolysis. Mechanistically, GLCC1 stabilizes c-Myc transcriptional factor from ubiquitination by direct interaction with HSP90 chaperon and further specifies the transcriptional modification pattern on c-Myc target genes, such as LDHA, consequently reprogram glycolytic metabolism for CRC proliferation. Clinically, GLCC1 is associated with tumorigenesis, tumor size and predicts poor prognosis. Thus, GLCC1 is mechanistically, functionally, and clinically oncogenic in colorectal cancer. Targeting GLCC1 and its pathway may be meaningful for treating patients with colorectal cancer. lncRNA and cellular metabolism are frequently dysregulated in cancer. In this study, the authors discover the lncGLCC1 is increased in colorectal cancer cells under glucose starvation conditions and correlates with poor prognosis in this cancer.

208 citations

Journal ArticleDOI
TL;DR: The current state of novel biological markers for BC, the evidence to demonstrate their clinical validity and utility, and the implication for therapeutic targeting are reviewed.
Abstract: Despite the wide improvements in breast cancer (BC) detection and adjuvant treatment, BC is still responsible for approximately 40,000 deaths annually in the United States. Novel biomarkers are fundamental to assist clinicians in BC detection, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing a more tailored approach to therapy in both primary and metastatic settings. In primary BC, the development of molecular profiling techniques has added prognostic and predictive information to conventional biomarkers - estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Moreover, the application of next-generation sequencing and reverse-phase protein microarray methods in the metastatic setting holds the promise to further advance toward a personalized management of cancer. The improvement in our understanding on BC biology associated with the study of the genomic aberrations characterizing the most common molecular subtypes allows us to explore new targets for drug development. Finally, the integration of cancer stem cell-targeted therapies and immune therapies in future combination regimens increases our chances to successfully treat a larger proportion of women with more aggressive and resistant metastatic disease. This article reviews the current state of novel biological markers for BC, the evidence to demonstrate their clinical validity and utility, and the implication for therapeutic targeting.

146 citations


Cites background from "Inhibition of HSP90 molecular chape..."

  • ...Hsp90 inhibitors are currently under investigation in several clinical trials and have shown early promising results in defined molecular subgroups of solid tumors such as the HER2-positive BC [31]....

    [...]

Journal ArticleDOI
TL;DR: A mouse model of spontaneous lymph node metastasis of breast cancer shows that primary tumors induced B cell accumulation in draining lymph nodes, identifying a key role for tumor-educated B cells and their derived antibodies in lymph node premetastatic niche formation, providing potential targets for cancer intervention.
Abstract: Primary tumors may create the premetastatic niche in secondary organs for subsequent metastasis. Humoral immunity contributes to the progression of certain cancers, but the roles of B cells and their derived antibodies in premetastatic niche formation are poorly defined. Using a mouse model of spontaneous lymph node metastasis of breast cancer, we show that primary tumors induced B cell accumulation in draining lymph nodes. These B cells selectively promoted lymph node metastasis by producing pathogenic IgG that targeted glycosylated membrane protein HSPA4, and activated the HSPA4-binding protein ITGB5 and the downstream Src/NF-κB pathway in tumor cells for CXCR4/SDF1α-axis-mediated metastasis. High serum anti-HSPA4 IgG was correlated with high tumor HSPA4 expression and poor prognosis of breast cancer subjects. Our findings identify a key role for tumor-educated B cells and their derived antibodies in lymph node premetastatic niche formation, providing potential targets for cancer intervention.

130 citations

References
More filters
Journal ArticleDOI
TL;DR: Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.
Abstract: Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.

2,273 citations

Journal ArticleDOI
TL;DR: It is demonstrated that HSP participation in multimolecular complex formation is required for src-mediated transformation and can provide a target for drug modulation.
Abstract: The molecular mechanisms by which oncogenic tyrosine kinases induce cellular transformation are unclear. Herbimycin A, geldanamycin, and certain other benzoquinone ansamycins display an unusual capacity to revert tyrosine kinase-induced oncogenic transformation. As an approach to the study of v-src-mediated transformation, we examined ansamycin action in transformed cells and found that drug-induced reversion could be achieved without direct inhibition of src phosphorylating activity. To identify mechanisms other than kinase inhibition for drug-mediated reversion, we prepared a solid phase-immobilized geldanamycin derivative and affinity precipitated the molecular targets with which the drug interacted. In a range of cell lines, immobilized geldanamycin bound elements of a major class of heat shock protein (HSP90) in a stable and pharmacologically specific manner. Consistent with these binding data, we found that soluble geldanamycin and herbimycin A inhibited specifically the formation of a previously described src-HSP90 heteroprotein complex. A related benzoquinone ansamycin that failed to revert transformed cells did not inhibit the formation of this complex. These results demonstrate that HSP participation in multimolecular complex formation is required for src-mediated transformation and can provide a target for drug modulation.

1,441 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: In this article, the authors reported that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp 90 from normal cells.
Abstract: Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signalling proteins, including HER-2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p531,2,3,4,5,6,7. Hsp90 inhibitors bind to Hsp90, and induce the proteasomal degradation of Hsp90 client proteins6,8,9,10,11. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells compared to normal cells, and the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is currently in phase I clinical trials12,13. However, the molecular basis of the tumour selectivity of Hsp90 inhibitors is unknown. Here we report that Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. Tumour Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. These results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.

1,284 citations

Journal Article
TL;DR: The results suggest that tumour cells contain Hsp90 complexes in an activated, high-affinity conformation that facilitates malignant progression, and that may represent a unique target for cancer therapeutics.
Abstract: 5628 Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of oncogenic signaling proteins including HER-2, Akt, Raf-1, Bcr-Abl, and mutated p53. The Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) binds Hsp90 and induces proteasomal degradation of Hsp90 ‘client’ proteins. Although Hsp90 is highly expressed in most cells, Hsp90 inhibitors selectively kill cancer cells, and 17-AAG is currently in Phase I clinical trials. However, the molecular basis of the tumor selectivity of Hsp90 inhibitors is unknown. The selective retention of 17-AAG in subcutaneous tumor masses in vivo suggests the existence of a drug ‘sink’ in tumor cells. Here we report that Hsp90 derived from tumor cells and clinical cancer biopsies has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells and tissues. Furthermore, the cytotoxic activity of 17-AAG correlates closely with the binding affinity of the drug to Hsp90 isolated from different cells. This binding affinity change is induced by association of Hsp90 with it’s co-chaperone proteins since tumor Hsp90 is present entirely in multi-chaperone complexes with high ATPase activity, whereas Hsp90 from normal tissues is in a latent, uncomplexed state. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity. Additional experiments addressing the relative contribution of cell cycling, oncoprotein overexpression and stress to the activation of Hsp90 will also be presented. We propose a model of Hsp90-dependent malignant progression in which, as tumor cells gradually accumulate mutant and overexpressed signaling proteins, Hsp90 becomes engaged in active chaperoning and stabilization of oncoproteins, and adopts a novel high-affinity form induced by bound co-chaperone proteins. Interestingly, dependence on the activated, high affinity chaperone could make Hsp90 an ’Achilles heel’ of tumor cells, driving the selective accumulation and bioactivity of pharmacological Hsp90 inhibitors, and making tumor Hsp90 a unique cancer target.

1,225 citations

Journal ArticleDOI
TL;DR: It is shown that CHIP abolishes the steroid-binding activity and transactivation potential of the glucocorticoid receptor, a well-characterized Hsp90 substrate, even though it has little effect on its synthesis.
Abstract: To maintain quality control in cells, mechanisms distinguish among improperly folded peptides, mature and functional proteins, and proteins to be targeted for degradation. The molecular chaperones, including heat-shock protein Hsp90, have the ability to recognize misfolded proteins and assist in their conversion to a functional conformation. Disruption of Hsp90 heterocomplexes by the Hsp90 inhibitor geldanamycin leads to substrate degradation through the ubiquitin-proteasome pathway, implicating this system in protein triage decisions. We previously identified CHIP (carboxyl terminus of Hsc70-interacting protein) to be an interaction partner of Hsc70 (ref. 4). CHIP also interacts directly with a tetratricopeptide repeat acceptor site of Hsp90, incorporating into Hsp90 heterocomplexes and eliciting release of the regulatory cofactor p23. Here we show that CHIP abolishes the steroid-binding activity and transactivation potential of the glucocorticoid receptor, a well-characterized Hsp90 substrate, even though it has little effect on its synthesis. Instead, CHIP induces ubiquitylation of the glucocorticoid receptor and degradation through the proteasome. By remodelling Hsp90 heterocomplexes to favour substrate degradation, CHIP modulates protein triage decisions that regulate the balance between protein folding and degradation for chaperone substrates.

976 citations