scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice

TL;DR: It is demonstrated that metronomic Myc inhibition not only contains Ras-driven lung tumors indefinitely, but also leads to their progressive eradication, endorsing Myc as a compelling cancer drug target.
Abstract: The principal reason for failure of targeted cancer therapies is the emergence of resistant clones that regenerate the tumor. Therapeutic efficacy therefore depends on not only how effectively a drug inhibits its target, but also the innate or adaptive functional redundancy of that target and its attendant pathway. In this regard, the Myc transcription factors are intriguing therapeutic targets because they serve the unique and irreplaceable role of coordinating expression of the many diverse genes that, together, are required for somatic cell proliferation. Furthermore, Myc expression is deregulated in most—perhaps all—cancers, underscoring its irreplaceable role in proliferation. We previously showed in a preclinical mouse model of non-small-cell lung cancer that systemic Myc inhibition using the dominant-negative Myc mutant Omomyc exerts a dramatic therapeutic impact, triggering rapid regression of tumors with only mild and fully reversible side effects. Using protracted episodic expression of Omomyc, we now demonstrate that metronomic Myc inhibition not only contains Ras-driven lung tumors indefinitely, but also leads to their progressive eradication. Hence, Myc does indeed serve a unique and nondegenerate role in lung tumor maintenance that cannot be complemented by any adaptive mechanism, even in the most aggressive p53-deficient tumors. These data endorse Myc as a compelling cancer drug target.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An impressive list of potential therapeutic targets was unveiled, drastically altering the clinical evaluation and treatment of patients for non-small-cell lung cancers, including immunotherapy.
Abstract: Non-small-cell lung cancers (NSCLCs), the most common lung cancers, are known to have diverse pathological features. During the past decade, in-depth analyses of lung cancer genomes and signalling pathways have further defined NSCLCs as a group of distinct diseases with genetic and cellular heterogeneity. Consequently, an impressive list of potential therapeutic targets was unveiled, drastically altering the clinical evaluation and treatment of patients. Many targeted therapies have been developed with compelling clinical proofs of concept; however, treatment responses are typically short-lived. Further studies of the tumour microenvironment have uncovered new possible avenues to control this deadly disease, including immunotherapy.

1,189 citations

Journal ArticleDOI
TL;DR: Because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Abstract: The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC9s cell growth– and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. Significance: MYC9s expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities. Cancer Discov; 5(10); 1024–39. ©2015 AACR.

833 citations

Journal ArticleDOI
TL;DR: This Review discusses key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Abstract: The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.

779 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: How transcriptional control is disrupted by genetic alterations in cancer cells, why transcriptional dependencies can develop as a consequence of dysregulated programs, and how these dependencies provide opportunities for novel therapeutic interventions in cancer are discussed.

767 citations


Cites background from "Inhibition of Myc family proteins e..."

  • ...Research in model systems of MYC addiction and withdrawal have validated addiction to this master regulatory transcription factor in solid and hematologic malignancies, both with and without structural changes to the MYC locus itself (Felsher and Bishop, 1999; Jain et al., 2002; Soucek et al., 2008; Soucek et al., 2013)....

    [...]

  • ...Research in model systems of MYC addiction and withdrawal have validated addiction to this master regulatory TF in solid and hematologic malignancies, both with and without structural changes to the MYC locus itself (Felsher and Bishop, 1999; Jain et al., 2002; Soucek et al., 2008, 2013)....

    [...]

Journal ArticleDOI
TL;DR: Tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms.
Abstract: The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the "hallmark" features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis.

614 citations


Cites background from "Inhibition of Myc family proteins e..."

  • ...Using a dominant negative MYC, designated “omoMYC,” investigators illustrated that conditional suppression of MYC appears to reverse RAS-induced tumorigenesis (Soucek et al. 2008, 2013)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: It is shown that the use of a recombinant adenovirus expressing Cre recombinase (AdenoCre) to induce K-ras G12D expression in the lungs of mice allows control of the timing and multiplicity of tumor initiation.
Abstract: Adenocarcinoma of the lung is the most common form of lung cancer, but the cell of origin and the stages of progression of this tumor type are not well understood. We have developed a new model of lung adenocarcinoma in mice harboring a conditionally activatable allele of oncogenic K-ras. Here we show that the use of a recombinant adenovirus expressing Cre recombinase (AdenoCre) to induce K-ras G12D expression in the lungs of mice allows control of the timing and multiplicity of tumor initiation. Through the ability to synchronize tumor initiation in these mice, we have been able to characterize the stages of tumor progression. Of particular significance, this system has led to the identification of a new cell type contributing to the development of pulmonary adenocarcinoma.

1,835 citations

Journal ArticleDOI
27 Oct 2011-Nature
TL;DR: The results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.
Abstract: Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.

1,737 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the conditional expression of an endogenous K-ras(G12D) allele in murine embryonic fibroblasts causes enhanced proliferation and partial transformation in the absence of further genetic abnormalities.

800 citations

Journal ArticleDOI
02 Oct 2008-Nature
TL;DR: It is shown that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo.
Abstract: Myc is a pleiotropic basic helix–loop–helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells1. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy.

748 citations