scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review covers the informatics encompassed by the Skyline ecosystem, from computationally assisted targeted mass spectrometry method development, to raw acquisition file data processing, and quantitative analysis and results sharing.
Abstract: Skyline is a freely available, open-source Windows client application for accelerating targeted proteomics experimentation, with an emphasis on the proteomics and mass spectrometry community as users and as contributors. This review covers the informatics encompassed by the Skyline ecosystem, from computationally assisted targeted mass spectrometry method development, to raw acquisition file data processing, and quantitative analysis and results sharing.

397 citations

Journal ArticleDOI
TL;DR: The studies suggest that CUL4–DDB1 ligases use WDR proteins as molecular adaptors for substrate recognition, and modulate multiple biological processes through ubiquitin-dependent proteolysis.
Abstract: CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation

397 citations

Journal ArticleDOI
TL;DR: This work compares and contrast uniparentally inherited loci for patterns of continuity and discreteness and discusses how their phylogenetic diversity and progression provide means to disentangle ancient colonization events by pioneering migrants from subsequent overlying migrations.
Abstract: Well-resolved molecular gene trees illustrate the concept of descent with modification and exhibit the opposing processes of drift and migration, both of which influence population structure. Phylogenies of the maternally inherited mtDNA genome and the paternally inherited portion of the nonrecombining Y chromosome retain sequential records of the accumulation of genetic diversity. Although knowledge regarding the diversity of the entire human genome will be needed to completely characterize human genetic evolution, these uniparentally inherited loci are unique indicators of gender in modulating the extant population structure. We compare and contrast these loci for patterns of continuity and discreteness and discuss how their phylogenetic diversity and progression provide means to disentangle ancient colonization events by pioneering migrants from subsequent overlying migrations. We introduce new results concerning Y chromosome founder haplogroups C, DE, and F that resolve their previous trifurcation and improve the harmony with the mtDNA recapitulation of the out-of-Africa migration.

396 citations


Cites background from "Initial sequencing and analysis of ..."

  • ...Even though wholegenomic approaches (19, 42, 60, 88, 118) are now opening up new avenues to answer these questions related to the origin and diversification of our species, mtDNA and the Y chromosome, with their unique patterns of inheritance, continue to be important sources of information....

    [...]

Journal ArticleDOI
TL;DR: Two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F are reported, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.
Abstract: Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.

396 citations


Cites background from "Initial sequencing and analysis of ..."

  • ...The public Human Genome Project assembly confirms the minimal tiling path and EST hits (Lander et al. 2001)....

    [...]

Journal ArticleDOI
05 Jun 2015-Science
TL;DR: The observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochROMatin disorganization as a potential determinant of human aging.
Abstract: Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.

396 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations