scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work evaluates different strategies for optimizing information return on effort and concludes that the strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random.
Abstract: Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random. With a choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort of structural genomics. It would take ∼16,000 carefully selected structure determinations to construct useful atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade provided that selection of targets is highly coordinated and significant funding is available.

347 citations

Journal ArticleDOI
TL;DR: The statistical solutions that help to overcome the problems with data-set complexity are described, in anticipation of the imminent wealth of data that will be generated by new genome-wide epigenetic profiling and DNA sequence analysis techniques.
Abstract: Epigenomic studies aim to define the location and nature of the genomic sequences that are epigenetically modified. Much progress has been made towards whole-genome epigenetic profiling using molecular techniques, but the analysis of such large and complex data sets is far from trivial given the correlated nature of sequence and functional characteristics within the genome. We describe the statistical solutions that help to overcome the problems with data-set complexity, in anticipation of the imminent wealth of data that will be generated by new genome-wide epigenetic profiling and DNA sequence analysis techniques. So far, epigenomic studies have succeeded in identifying CpG islands, but recent evidence points towards a role for transposable elements in epigenetic regulation, causing the fields of study of epigenetics and transposable element biology to converge.

347 citations

Journal ArticleDOI
TL;DR: In this article, a new scientific field called metallomics is proposed to integrate the research fields related to biometals, where metalloproteins, metalloenzymes and other metal-containing biomolecules are defined as "metallomes" in a similar manner to genomes in genomics as well as proteomes in proteomics.
Abstract: In this paper, “metallomics” is proposed as a new scientific field in order to integrate the research fields related to biometals. Metallomics should be a scientific field in symbiosis with genomics and proteomics, because syntheses and metabolic functions of genes (DNA and RNA) and proteins cannot be performed without the aid of various metal ions and metalloenzymes. In metallomics, metalloproteins, metalloenzymes and other metal- containing biomolecules are defined as “metallomes”, in a similar manner to genomes in genomics as well as proteomes in proteomics. Since the identification of metallomes and the elucidation of their biological or physiological functions in the biological systems is the main research target of metallomics, chemical speciation for specific identification of bioactive metallomes is one of the most important analytical technologies to establish metallomics as the integrated bio-metal science. In order to rationalize the concept of metallomics, the distributions of the elements in man, human blood serum and sea-water, a challenge to all-elements analysis of one biological cell, and some other research topics are introduced with emphasis on recent development of chemical speciation of trace metals in some biological samples.

347 citations

Journal ArticleDOI
01 Dec 2005-Genomics
TL;DR: Phylogenetic analyses based on both nucleotide and protein data demonstrated that HSP90(AA+AB+B) formed a monophyletic clade, whereas TRAP is a relatively distant paralogue of this clade.

346 citations

Journal ArticleDOI
TL;DR: This Review concentrates on the technology behind the third- and fourth-generation sequencing methods: their challenges, current limitations, and tantalizing promise.
Abstract: DNA sequencing is in the throes of an enormous technological shift marked by dramatic throughput increases, a precipitously dropping per-base cost of raw sequence, and an accompanying requirement for substantial investment in large capital equipment in order to utilize the technology. Investigations that were, for most, unreachable luxuries just a few years ago (individual genome sequencing, metagenomics studies, and the sequencing of myriad organisms of interest) are being increasingly enabled, at a rapid pace. This Review concentrates on the technology behind the third- and fourth-generation sequencing methods: their challenges, current limitations, and tantalizing promise. First-generation sequencing encompasses the chain termination method pioneered by Sanger and Coulson1 in 1975 or the chemical method of Maxam and Gilbert in 1976–1977.2 In 1977, Sanger sequenced the first genome, bacteriophage ΦX 174, which is 5375 bases in length.3 These methods and their early history4 have been reviewed in detail previously.5 Four-color fluorescent Sanger sequencing, where each color corresponds to one of the four DNA bases, is the method used by the automated capillary electrophoresis (CE) systems marketed by Applied Biosystems Inc., now integrated into Life Technologies, and by Beckman Coulter Inc. (Table 1).6 The first composite human genome sequence, reported in 2001, was obtained largely using CE, at great cost and with intense human effort over more than a decade.7,8 While the genome reported in 2001 was a work in progress, the availability of an ever-improving “reference” genome is the basis of an ongoing transformation of biological science and remains fundamental to investigations of genotype–phenotype relationships. Considering reports that have appeared (and not appeared) in the literature to date, it could well be that medically meaningful (actionable) insights into complex diseases will require additional types of “personal” genomic data, for instance, tissue-specific mRNA expression profiling and mRNA sequencing, individualized analysis of gene regulatory regions, epigenetic profiling, and high-quality, long-range chromosome mapping to catalog significant deletions, insertions, rearrangements, etc. Correlation of such integrated genomic data sets with comprehensive medical histories for hundreds or thousands of individuals may be what it takes to reach an era of personalized medicine.9–11 Large-scale sequencing centers are now completing the conversion to next-generation sequencers; the Joint Genome Institute (JGI) has retired all of their Sanger sequencing instruments.12 At the other extreme, until small-scale next-generation sequencers can outperform CE on a cost per accurate base called as well as read length, CE systems will likely remain in heavy use for benchtop-scale, targeted sequencing for directed investigations such as quantitative gene expression, biomarker identification, and pathway analysis. Table 1 First- and Second-Generation Sequencing Technologies

346 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations