scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A positive correlation is shown, both genome-wide and at a high resolution, between replication timing and a range of genome parameters including GC content, gene density and transcriptional activity.
Abstract: We have developed a directly quantitative method utilizing genomic clone DNA microarrays to assess the replication timing of sequences during the S phase of the cell cycle. The genomic resolution of the replication timing measurements is limited only by the genomic clone size and density. We demonstrate the power of this approach by constructing a genome-wide map of replication timing in human lymphoblastoid cells using an array with clones spaced at 1 Mb intervals and a high-resolution replication timing map of 22q with an array utilizing overlapping sequencing tile path clones. We show a positive correlation, both genome-wide and at a high resolution, between replication timing and a range of genome parameters including GC content, gene density and transcriptional activity.

346 citations

Journal ArticleDOI
TL;DR: The evolution of ERV lineages is discussed, considering the processes by which ERV distribution and diversity is generated, and the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered.
Abstract: The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed

346 citations

Journal ArticleDOI
TL;DR: Oncogenic viruses have served as important experimental models for the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance.

345 citations


Cites background from "Initial sequencing and analysis of ..."

  • ...Today, HERVs constitute ~8% of genome [366] and possess a similar genomic organization to exogenous complex retroviruses such as human immunodeficiency virus (HIV) and HTLV....

    [...]

Journal ArticleDOI
TL;DR: The most exciting direction for genetic research on intelligence is to harness the power of the Human Genome Project to identify some of the specific genes responsible for the heritability of intelligence.
Abstract: More is known about the genetics of intelligence than about any other trait, behavioral or biological, which is selectively reviewed in this article. Two of the most interesting genetic findings are that heritability of intelligence increases throughout the life span and that the same genes affect diverse cognitive abilities. The most exciting direction for genetic research on intelligence is to harness the power of the Human Genome Project to identify some of the specific genes responsible for the heritability of intelligence. The next research direction will be functional genomics--for example, understanding the brain pathways between genes and intelligence. Deoxyribonucleic acid (DNA) will integrate life sciences research on intelligence; bottom-up molecular biological research will meet top-down psychological research in the brain.

345 citations

Journal ArticleDOI
Paul A. Wade1
TL;DR: The biochemistry, DNA‐binding properties, and genetics of the MBD proteins that are linked to transcriptional repression, namely, MeCP2, MBD1,MBD2, and MBD3 are reviewed and several models to account for the functional properties of methylated DNA are presented.
Abstract: Since its discovery, methylation of DNA in mammalian cells has been correlated with transcriptional repression and with specialized chromatin structures Recently, considerable progress has been reported in the identification of protein factors with a highly conserved DNA interaction surface, termed the methyl CpG-binding domain or MBD A subset has been biochemically linked to histone deacetylases, suggesting a molecular mechanism for the functional properties of methylated DNA Despite several obvious attractions, the connection between MBD proteins and histone deacetylases fails to explain all the existing data In fact, the biochemistry and DNA-binding properties of most MBD family members have not been adequately described and considerable evidence exists for alternative mechanisms in the repression of methylated loci Null mutations have been generated in mice for several MBD family members, the phenotypes of the mutant animals raise important questions regarding the functions of the MBD family Here, I review the biochemistry, DNA-binding properties, and genetics of the MBD proteins that are linked to transcriptional repression, namely, MeCP2, MBD1, MBD2, and MBD3 Several models to account for the functional properties of methylated DNA are presented

344 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations