scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction.

297 citations

Journal ArticleDOI
TL;DR: The Molecular Biology Database Collection is an online resource listing key databases of value to the biological community that provide newvalue to the underlying data by virtue of curation, new data connections or other innovative approaches.
Abstract: The Molecular Biology Database Collection is an online resource listing key databases of value to the biological community. This Collection is intended to bring fellow scientists’ attention to high-quality databases that are available throughout the world, rather than just be a lengthy listing of all available databases. As such, this up-to-date listing is intended to serve as the initial point from which to find specialized databases that may be of use in biological research. The databases included in this Collection provide new value to the underlying data by virtue of curation, new data connections or other innovative approaches. Short, searchable summaries and updates for each of the databases included in the Collection are available through the Nucleic Acids Research Web site at http://nar.oupjournals.org.

297 citations

Journal ArticleDOI
TL;DR: It was found that all six measures of evolutionary change in the human genome vary significantly in megabase-sized regions genome-wide, and many vary together, indicating that some regions of a genome change slowly by all processes that alter DNA, and others change faster.
Abstract: Six measures of evolutionary change in the human genome were studied, three derived from the aligned human and mouse genomes in conjunction with the Mouse Genome Sequencing Consortium, consisting of (1) nucleotide substitution per fourfold degenerate site in coding regions, (2) nucleotide substitution per site in relics of transposable elements active only before the human-mouse speciation, and (3) the nonaligning fraction of human DNA that is nonrepetitive or in ancestral repeats; and three derived from human genome data alone, consisting of (4) SNP density, (5) frequency of insertion of transposable elements, and (6) rate of recombination. Features 1 and 2 are measures of nucleotide substitutions at two classes of "neutral" sites, whereas 4 is a measure of recent mutations. Feature 3 is a measure dominated by deletions in mouse, whereas 5 represents insertions in human. It was found that all six vary significantly in megabase-sized regions genome-wide, and many vary together. This indicates that some regions of a genome change slowly by all processes that alter DNA, and others change faster. Regional variation in all processes is correlated with, but not completely accounted for, by GC content in human and the difference between GC content in human and mouse.

296 citations

Journal ArticleDOI
TL;DR: The performance of this miniaturized DNA sequencer provides a benchmark for predicting the ultimate cost and efficiency limits of Sanger sequencing.
Abstract: An efficient, nanoliter-scale microfabricated bioprocessor integrating all three Sanger sequencing steps, thermal cycling, sample purification, and capillary electrophoresis, has been developed and evaluated. Hybrid glass–polydimethylsiloxane (PDMS) wafer-scale construction is used to combine 250-nl reactors, affinity-capture purification chambers, high-performance capillary electrophoresis channels, and pneumatic valves and pumps onto a single microfabricated device. Lab-on-a-chip-level integration enables complete Sanger sequencing from only 1 fmol of DNA template. Up to 556 continuous bases were sequenced with 99% accuracy, demonstrating read lengths required for de novo sequencing of human and other complex genomes. The performance of this miniaturized DNA sequencer provides a benchmark for predicting the ultimate cost and efficiency limits of Sanger sequencing.

296 citations

Journal ArticleDOI
James R. Brown1
TL;DR: Comparative sequence analyses of genomes indicates that the universal tree of life might be at risk because of pervasive, ancient HGT, and considerable debate now ensues about the role of HGT in genome evolution.
Abstract: The cornerstone of Charles Darwin's theory of evolution is the vertical inheritance of traits from parent to offspring across successive generations. However, molecular evolutionary biologists have shown that extensive horizontal (also known as lateral) gene transfer (HGT) can occur between distantly related species. Comparative sequence analyses of genomes indicates that the universal tree of life might be at risk because of pervasive, ancient HGT. Considerable debate now ensues about the role of HGT in genome evolution. At stake are a fundamental understanding of how life evolved and a deeper knowledge of the functioning of all genomes, including that of humans.

295 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations