scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A new method is described for predicting the ancestral order and orientation of those intervals from their observed adjacencies in modern species, and a map of an early mammalian genome is produced that accounts for 96.8% of the available human genome sequence data.
Abstract: The increasing number of mammalian genome sequences becoming available provides scientists with dramatic opportunities to better understand human evolution. Comparative genome analysis enables us to computationally reconstruct an ancestral mammalian genome by comparing the genomes of living descendants. Here, we introduce new methods and tools for identifying large-scale rearrangements and reconstructing contiguous ancestral regions. We discuss several critical problems, including the identification of conserved segments that have not been rearranged through evolution of the studied species, the prediction of ancestral order of these conserved segments, and the computational evaluation of the reconstruction. Using these methods, several analyses have been carried out. In particular, we analyze mammalian genome rearrangements at higher resolution than has been published to date. In the lineages leading to human, mouse, rat and dog from their most recent common ancestor, we identify 1338 conserved intervals over 50Kb in length. Using our algorithm for predicting the ancestral order and orientation of those intervals from their observed adjacencies in modern species, we produce a karyotype map of an early mammalian genome that accounts for 96.8% of the available human genome sequence data. The precision is further increased by mapping inversions as small as 31 bp. We also discuss the biological insights gained from these analyses. Although only a few mammalian genomes are currently sequenced to high precision, our evaluation indicates that our results are reasonably accurate, and that they will become highly accurate in the foreseeable future.

295 citations

Journal ArticleDOI
TL;DR: A flexible suite of methods for the identification and visualization of conserved transcription-factor-binding sites is devised, which dramatically improves the predictive selectivity of bioinformatic approaches to the analysis of promoter sequences.
Abstract: For genes that have been successfully delineated within the human genome sequence, most regulatory sequences remain to be elucidated The annotation and interpretation process requires additional data resources and significant improvements in computational methods for the detection of regulatory regions One approach of growing popularity is based on the preferential conservation of functional sequences over the course of evolution by selective pressure, termed 'phylogenetic footprinting' Mutations are more likely to be disruptive if they appear in functional sites, resulting in a measurable difference in evolution rates between functional and non-functional genomic segments We have devised a flexible suite of methods for the identification and visualization of conserved transcription-factor-binding sites The system reports those putative transcription-factor-binding sites that are both situated in conserved regions and located as pairs of sites in equivalent positions in alignments between two orthologous sequences An underlying collection of metazoan transcription-factor-binding profiles was assembled to facilitate the study This approach results in a significant improvement in the detection of transcription-factor-binding sites because of an increased signal-to-noise ratio, as demonstrated with two sets of promoter sequences The method is implemented as a graphical web application, ConSite, which is at the disposal of the scientific community at http://wwwphylofootorg/ Phylogenetic footprinting dramatically improves the predictive selectivity of bioinformatic approaches to the analysis of promoter sequences ConSite delivers unparalleled performance using a novel database of high-quality binding models for metazoan transcription factors With a dynamic interface, this bioinformatics tool provides broad access to promoter analysis with phylogenetic footprinting

295 citations

Journal ArticleDOI
TL;DR: The limits of the analysis are described, the striking unevenness of pseudogene derivation in the IF multigene family is discussed and the nomenclature of Moll and colleagues is proposed to extend to any novel keratin.
Abstract: We screened the draft sequence of the human genome for genes that encode intermediate filament (IF) proteins in general, and keratins in particular. The draft covers nearly all previously established IF genes including the recent cDNA and gene additions, such as pancreatic keratin 23, synemin and the novel muscle protein syncoilin. In the draft, seven novel type II keratins were identified, presumably expressed in the hair follicle/epidermal appendages. In summary, 65 IF genes were detected, placing IF among the 100 largest gene families in humans. All functional keratin genes map to the two known keratin clusters on chromosomes 12 (type II plus keratin 18) and 17 (type I), whereas other IF genes are not clustered. Of the 208 keratin-related DNA sequences, only 49 reflect true keratin genes, whereas the majority describe inactive gene fragments and processed pseudogenes. Surprisingly, nearly 90% of these inactive genes relate specifically to the genes of keratins 8 and 18. Other keratin genes, as well as those that encode non-keratin IF proteins, lack either gene fragments/pseudogenes or have only a few derivatives. As parasitic derivatives of mature mRNAs, the processed pseudogenes of keratins 8 and 18 have invaded most chromosomes, often at several positions. We describe the limits of our analysis and discuss the striking unevenness of pseudogene derivation in the IF multigene family. Finally, we propose to extend the nomenclature of Moll and colleagues to any novel keratin.

295 citations

Journal ArticleDOI
TL;DR: The throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning is combined to experimentally determine the haplotype-resolved genome of a South Asian individual.
Abstract: Sequencing a human genome using next-generation methods does not distinguish between the two copies of each chromosome. Kitzman et al. determine a haplotype-resolved genome sequence by efficiently constructing and sequencing long-insert clones that cover the diploid genome with a low likelihood of overlap.

295 citations

Journal ArticleDOI
TL;DR: Two cDNA microarray-based applications of DNA-nanocrystal conjugates, single-nucleotide polymorphism (SNP) and multiallele detections, using a commercial scanner and two sets of nanocrystals with orthogonal emissions are reported.
Abstract: We report two cDNA microarray-based applications of DNA-nanocrystal conjugates, single-nucleotide polymorphism (SNP) and multiallele detections, using a commercial scanner and two sets of nanocrystals with orthogonal emissions. We focus on SNP mutation detection in the human p53 tumor suppressor gene, which has been found to be mutated in more than 50% of the known human cancers. DNA-nanocrystal conjugates are able to detect both SNP and single-base deletion at room temperature within minutes, with true-to-false signal ratios above 10. We also demonstrate microarray-based multiallele detection, using hybridization of multicolor nanocrystals conjugated to two sequences specific for the hepatitis B and hepatitis C virus, two common viral pathogens that inflict more than 10% of the population in the developing countries worldwide. The simultaneous detection of multiple genetic markers with microarrays and DNA-nanocrystal conjugates has no precedent and suggests the possibility of detecting an even greater number of bacterial or viral pathogens simultaneously.

294 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations