scispace - formally typeset
Open AccessJournal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander, +248 more
- 15 Feb 2001 - 
- Vol. 409, Iss: 6822, pp 860-921
Reads0
Chats0
TLDR
The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Finishing the euchromatic sequence of the human genome

Chris P. Ponting, +1 more
- 21 Oct 2004 - 
TL;DR: The current human genome sequence (Build 35) as discussed by the authors contains 2.85 billion nucleotides interrupted by only 341 gaps and is accurate to an error rate of approximately 1 event per 100,000 bases.
Journal ArticleDOI

A Draft Sequence of the Neandertal Genome

TL;DR: The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Ne andertal DNA in contemporary humans, suggesting that gene flow from Neand Bertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Journal ArticleDOI

A gene atlas of the mouse and human protein-encoding transcriptomes

TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Journal ArticleDOI

An efficient algorithm for large-scale detection of protein families

TL;DR: This work presents a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families based on precomputed sequence similarity information that has been rigorously tested and validated on a number of very large databases.
References
More filters
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

The Pfam protein families database

TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Journal ArticleDOI

The sequence of the human genome.

J. Craig Venter, +272 more
- 16 Feb 2001 - 
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Journal ArticleDOI

Identification of common molecular subsequences.

TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).
Journal ArticleDOI

Sequence and organization of the human mitochondrial genome

TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Related Papers (5)

The sequence of the human genome.

J. Craig Venter, +272 more
- 16 Feb 2001 -