scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature (Nature Publishing Group)-Vol. 409, Iss: 6822, pp 860-921
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Laurent C. Francioli1, Androniki Menelaou1, Sara L. Pulit1, Freerk van Dijk1, Pier Francesco Palamara2, Clara C. Elbers1, Pieter B. Neerincx1, Kai Ye3, Kai Ye4, Victor Guryev, Wigard P. Kloosterman1, Patrick Deelen1, Abdel Abdellaoui5, Elisabeth M. van Leeuwen6, Mannis van Oven6, Martijn Vermaat3, Mingkun Li7, Jeroen F. J. Laros3, Lennart C. Karssen6, Alexandros Kanterakis1, Najaf Amin6, Jouke-Jan Hottenga5, Eric-Wubbo Lameijer3, Mathijs Kattenberg5, Martijn Dijkstra1, Heorhiy Byelas1, Jessica van Setten8, Barbera D. C. van Schaik5, Jan Bot, Isaac J. Nijman1, Ivo Renkens1, Tobias Marschall9, Alexander Schönhuth, Jayne Y. Hehir-Kwa10, Robert E. Handsaker10, Robert E. Handsaker11, Paz Polak10, Mashaal Sohail10, Mashaal Sohail12, Dana Vuzman12, Fereydoun Hormozdiari, David van Enckevort, Hailiang Mei6, Vyacheslav Koval3, Matthijs Moed1, K. Joeri van der Velde1, Fernando Rivadeneira6, Fernando Rivadeneira12, Fernando Rivadeneira10, Karol Estrada6, Carolina Medina-Gomez6, Aaron Isaacs11, Aaron Isaacs10, Steven A. McCarroll3, Marian Beekman3, Anton J. M. de Craen3, H. Eka D. Suchiman3, Albert Hofman6, Ben A. Oostra6, André G. Uitterlinden6, Gonneke Willemsen5, Mathieu Platteel1, Jan H. Veldink8, Leonard H. van den Berg13, Steven J. Pitts13, Shobha Potluri13, Purnima Sundar13, David R. Cox10, David R. Cox12, Shamil R. Sunyaev3, Johan T. den Dunnen7, Mark Stoneking7, Peter de Knijff3, Manfred Kayser6, Qibin Li14, Yingrui Li14, Yuanping Du14, Ruoyan Chen14, Hongzhi Cao14, Ning Li, Sujie Cao, Jun Wang15, Jasper A. Bovenberg, Itsik Pe'er2, P. Eline Slagboom3, Cornelia M. van Duijn6, Dorret I. Boomsma5, Gert-Jan B. van Ommen3, Paul I.W. de Bakker8, Paul I.W. de Bakker1, Morris A. Swertz, Cisca Wijmenga 
TL;DR: The Genome of the Netherlands (GoNL) Project is described, in which the whole genomes of 250 Dutch parent-offspring families were sequenced and a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions were constructed.
Abstract: Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (∼13×) and trio design enabled extensive characterization of structural variation, including midsize events (30-500 bp) previously poorly catalogued and de novo mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of future population studies.

677 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA is identified and it is revealed that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago.
Abstract: Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. We have identified a 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago. Existing technology and fossil resources are now sufficient to initiate a Neanderthal genome-sequencing effort.

677 citations

Journal ArticleDOI
17 Nov 2016-Cell
TL;DR: An overview of emerging principles of enhancers function, current models of enhancer architecture, genomic substrates from which enhancers emerge during evolution, and the influence of three-dimensional genome organization on long-range gene regulation are given.

670 citations

Journal ArticleDOI
09 Mar 2011-PLOS ONE
TL;DR: DeconSeq is a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (150 bp mean read length) and allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods.
Abstract: High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions. Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq, we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences. This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods. DeconSeq's web interface is simple and user-friendly. The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq's results reveal whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/.

670 citations

Journal ArticleDOI
TL;DR: In this review, the development of this technology is discussed, its broad application to biological systems, and its possible role in the area of proteomics are discussed.
Abstract: ▪ Abstract Expressed protein ligation (EPL) is a protein engineering approach that allows recombinant and synthetic polypeptides to be chemoselectively and regioselectively joined together. The approach makes the primary structure of most proteins accessible to the tools of synthetic organic chemistry, enabling the covalent structure of proteins to be modified in an unprecedented fashion. The ability to incorporate noncoded amino acids, biophysical probes, and stable isotopes into specific locations within proteins provides research tools to peer into the inner workings of these molecules. In this review I discuss the development of this technology, its broad application to biological systems, and its possible role in the area of proteomics.

669 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: This letter extends the heuristic homology algorithm of Needleman & Wunsch (1970) to find a pair of segments, one from each of two long sequences, such that there is no other Pair of segments with greater similarity (homology).

10,262 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations