scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control.

TL;DR: In this paper, microsclerotia- or blastospores-based formulations of Metarhizium robertsii for R. microplus control under semi-field conditions were explored.
Abstract: The tick Rhipicephalus microplus poses a serious threat to the cattle industry, resulting in economic losses aggravated by tick resistance to chemical acaricides. Strains of Metarhizium spp., a well-known group of entomopathogenic fungi, can contribute to managing this ectoparasite. We explored two novel granular, microsclerotia- or blastospores-based formulations of Metarhizium robertsii for R. microplus control under semi-field conditions. Fungal persistence in soil was also observed for 336 days. The experiment used pots of Urochloa decumbens cv. Basilisk grass, treated with 0.25 or 0.5 mg of granular formulation/cm2 (25 or 50 kg/ha) applied to the soil surface prior to transferring engorged tick females onto the treated soil. The fungal granules yielded more conidia with subsequent sporulation under controlled indoor conditions than in the outdoor environment, where the levels of fungus rapidly declined over time. Metarhizium-root colonization ranged from 25 to 66.7% depending on the propagule and rate. Fungal formulations significantly reduced the number of tick larvae during the humid season, reaching at least 64.8% relative efficacy. Microsclerotia or blastospores-granular formulations of M. robertsii can reduce the impact of R. microplus, and thus prove to be a promising tool in the control of ticks.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Mar 2022-Insects
TL;DR: A comprehensive list of the use of commercialized Metarhizium and Beauveria-based biopesticides in the USA that have been tested against ixodid ticks under laboratory and field conditions and when used as a part of integrated tick management is compiled.
Abstract: Simple Summary Microbial biopesticides containing entomopathogenic fungi have potential in tick management. In this review, we compiled a comprehensive list of the use of commercialized Metarhizium and Beauveria-based biopesticides in the USA that have been tested against ixodid ticks under laboratory and field conditions and when used as a part of integrated tick management. Despite considerable progress in the development of fungal biopesticides over the past 20 years, the establishment of commercial products available for use against ticks continues to be slow. There is a need for the development of sustainable, nonchemical tick management strategies. Until efficacious fungus-based products become more available, tick management will rely primarily on synthetic chemical acaricides, with natural-product acaricides as the alternative. Abstract There is a need for the development of sustainable, nonchemical tick management strategies. Mycoacaricide and mycoinsecticide product development worldwide has focused primarily on fungi in the genera Beauveria (Hypocreales: Cordycipitaceae) and Metarhizium (Hypocreales: Clavicipitaceae). Microbial biopesticides containing entomopathogenic fungi have potential in tick management. However, despite considerable progress in the development of fungal biopesticides over the past 20 years, the establishment of commercial products available for use against ticks continues to be slow. We reviewed published scientific literature and compiled a comprehensive list of reports of the effectiveness of commercial biopesticides based on the fungal genera Metarhizium and Beauveria and registered for use in the USA against ixodid ticks under laboratory and field conditions. We also report on results when these biopesticides were used as a part of integrated tick management. Until efficacious fungus-based products become more available, tick management will rely primarily on synthetic chemical acaricides, with natural-product acaricides as the alternative.

10 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiological facilitates key aspects of their ecology as keystone microbes and as mycoinsectides.
Abstract: Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.

10 citations

Journal ArticleDOI
28 May 2021-Biology
TL;DR: In this paper, a review of the biological activity of fungi and bacteria against some mites and ticks of veterinary interest is presented, focusing on the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and also pets.
Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets. Their impact on animal and human health has been stressed, examining the weaknesses and strengths of conventional treatments. Bacillus thuringiensis, Beauveria bassiana and Metarhizium anisopliae are the most widely employed agents. Their activities have been reviewed, considering the feasibility of an in-field application and the effectiveness of the administration alone or combined with conventional and alternative drugs is reported.

9 citations

Journal ArticleDOI
TL;DR: This formulation prototype of microsclerotial pellets of M. anisopliae IP 119 effectively suppressed R. microplus and showed outstanding UV-B tolerance in laboratory tests and may offer a novel mycoacaricide for its sustainable management.
Abstract: This study was sought to devise pellets containing inorganic materials and microsclerotia of Metarhizium anisopliae strain IP 119 for biological control of Rhipicephalus microplus, the most economically important tick in Brazilian cattle industry. In addition, we evaluated the storage stability of the pellets, their tolerance to ultraviolet radiation (UV-B), and efficacy against ticks under laboratory conditions. Fungal microsclerotia were produced by liquid culture fermentation and mixed with pre-selected inorganic matrices: vermiculite powder, diatomaceous earth, and colloidal silicon dioxide (78:20:2, w/w/w). The microsclerotial pellets were then prepared by a two-stage process involving extrusion and spheronization. Pellet size averaged 525.53 ± 7.74 μm, with a sphericity index of 0.72 ± 0.01, while biomass constituents did not affect the wet mass properties. Conidial production from microsclerotial pellets upon rehydration ranged from 1.85 × 109 to 1.97 × 109 conidia g−1 with conidial viability ≥ 93%. Conidial production from pellets stored at 4 °C was invariable for up to 21 days. Unformulated microsclerotia and microsclerotial pellets were extremely tolerant to UV-B compared with aerial conidia. Engorged tick females exposed to conidia from sporulated pellets applied to soil samples and upon optimal rehydration exhibited shorter oviposition time length, shorter life span, and reduced number of hatched larvae. In summary, microsclerotial pellets of M. anisopliae IP 119 effectively suppressed R. microplus and showed outstanding UV-B tolerance in laboratory tests. Prospectively, this formulation prototype is promising for targeting the non-parasitic stage of this tick on outdoor pasture fields and may offer a novel mycoacaricide for its sustainable management. • Pellets with microsclerotia and inorganic materials are innovative for tick control. • Metarhizium microsclerotia show superior UV-B tolerance in relation to conidia. • Pellets of Metarhizium microsclerotia produce infective conidia against ticks.

7 citations

Journal ArticleDOI
TL;DR: In this article , entomopathogenic fungi (EPFs) are used to manage vector-borne diseases such as malaria and arboviral infections in the field of Integrated Pest/Vector Management.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here the authors focus on count responses and its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean is unique.
Abstract: Count data can be analyzed using generalized linear mixed models when observations are correlated in ways that require random effects However, count data are often zero-inflated, containing more zeros than would be expected from the typical error distributions We present a new package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here we focus on count responses glmmTMB is faster than glmmADMB, MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling One unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean Overall, its most appealing features for new users may be the combination of speed, flexibility, and its interface’s similarity to lme4

4,497 citations

Journal ArticleDOI
TL;DR: An updated, comprehensive list of mycoinsecticides and mycoacaricides developed worldwide since the 1960s, with a total of 171 products claimed to control acarines (mites and ticks) in at least 4 families.

1,163 citations

Journal ArticleDOI
TL;DR: Current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance is presented.

926 citations