scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Insights into C ? C Coupling in CO2 Electroreduction on Copper Electrodes

01 Mar 2013-Chemcatchem (John Wiley & Sons, Ltd)-Vol. 5, Iss: 3, pp 737-742
TL;DR: In this article, a first-principles theoretical study of carbon-carbon coupling in CO2 electroreduction on the copper 2 1/1/1 surface is presented.
Abstract: We present a first‐principles theoretical study of carbon–carbon coupling in CO2 electroreduction on the copper 2 1 1 surface. Using DFT, we have determined kinetic barriers to the formation of a CC bond between adsorbates derived from CO. The results of our nudged elastic band calculations demonstrate that kinetic barriers to CC coupling decrease significantly with the degree of hydrogenation of reacting adsorbates. We also show that this trend is not affected by the electrical fields present at the solid‐electrolyte interface during electrocatalysis. Our results explain how copper can catalyze the production of higher hydrocarbons and oxygenates in the electrochemical environment, despite producing only single carbon atom products in gas‐phase catalysis, and how CC bonds can be formed at room temperature in the electrochemical environment, whereas substantially higher temperatures are needed in the Fischer–Tropsch catalysis. The unique feature of the electrochemical environment is that the chemical potential of hydrogen (electrons and protons) can be varied through the applied potential. This allows a variation of the degree of hydrogenation of the reactants and thus the activation barrier for CC coupling.
Citations
More filters
Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: This Perspective highlights several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discusses the reaction pathways through which they form various products, including copper, a unique catalyst as it yields hydrocarbon products with acceptable efficiencies.
Abstract: The electrochemical reduction of CO2 has gained significant interest recently as it has the potential to trigger a sustainable solar-fuel-based economy. In this Perspective, we highlight several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discuss the reaction pathways through which they form various products. Among those, copper is a unique catalyst as it yields hydrocarbon products, mostly methane, ethylene, and ethanol, with acceptable efficiencies. As a result, substantial effort has been invested to determine the special catalytic properties of copper and to elucidate the mechanism through which hydrocarbons are formed. These mechanistic insights, together with mechanistic insights of CO2 reduction on other metals and molecular complexes, can provide crucial guidelines for the design of future catalyst materials able to efficiently and selectively reduce CO2 to useful products.

1,396 citations

Journal ArticleDOI
24 Apr 2014-Nature
TL;DR: The results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice, demonstrating the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.
Abstract: The electrochemical conversion of CO and H2O into liquid fuel is made feasible at modest potentials with the use of oxide-derived nanocystalline Cu as the catalyst. Renewable electricity is often produced when it is not needed. If the surplus could be harnessed to drive the conversion of CO2 and water into liquid fuel, the energy would not go to waste and a use would be found for CO2 produced by carbon capture. All this requires efficient electrocatalysts that reduce CO2 not only to CO, but also further into fuel chemicals. Copper does this but with low efficiency and selectivity. Christina Li et al. now show that the intrinsic catalytic properties of copper can be improved by producing it from its oxide as interconnected nanocrystallites. Their enhanced catalyst generates primarily ethanol, demonstrating that a two-step conversion of CO2 to liquid fuel powered by renewable electricity might be possible. The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel1,2,3 are not available at present. Although many catalysts4,5,6,7,8,9,10,11 can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products12,13. Here we show that nanocrystalline Cu prepared from Cu2O (‘oxide-derived Cu’) produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25 volts to –0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

1,256 citations

References
More filters
Journal ArticleDOI
TL;DR: Novel features are that the pseudopotential itself becomes charge-state dependent, the usual norm-conservation constraint does not apply, and a generalized eigenproblem is introduced.
Abstract: A new approach to the construction of first-principles pseudopotentials is described. The method allows transferability to be improved systematically while holding the cutoff radius fixed, even for large cutoff radii. Novel features are that the pseudopotential itself becomes charge-state dependent, the usual norm-conservation constraint does not apply, and a generalized eigenproblem is introduced. The potentials have a separable form well suited for plane-wave solid-state calculations, and show promise for application to first-row and transition-metal systems.

18,782 citations

Journal ArticleDOI
TL;DR: In this article, a modification of the nudged elastic band method for finding minimum energy paths is presented, where one of the images is made to climb up along the elastic band to converge rigorously on the highest saddle point.
Abstract: A modification of the nudged elastic band method for finding minimum energy paths is presented. One of the images is made to climb up along the elastic band to converge rigorously on the highest saddle point. Also, variable spring constants are used to increase the density of images near the top of the energy barrier to get an improved estimate of the reaction coordinate near the saddle point. Applications to CH4 dissociative adsorption on Ir~111! and H2 on Si~100! using plane wave based density functional theory are presented. © 2000 American Institute of Physics. @S0021-9606~00!71246-3#

14,071 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...

7,711 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe recent technical developments that have made the total-energy pseudopotential the most powerful ab initio quantum-mechanical modeling method presently available, and they aim to heighten awareness of the capabilities of the method in order to stimulate its application to as wide a range of problems in as many scientific disciplines as possible.
Abstract: This article describes recent technical developments that have made the total-energy pseudopotential the most powerful ab initio quantum-mechanical modeling method presently available. In addition to presenting technical details of the pseudopotential method, the article aims to heighten awareness of the capabilities of the method in order to stimulate its application to as wide a range of problems in as many scientific disciplines as possible.

7,666 citations

Journal ArticleDOI
TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Abstract: Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.

7,076 citations