scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Instabilities in crystal growth by atomic or molecular beams

TL;DR: In this paper, a review of the most frequent instabilities in ballistic growth is presented, which are mostly kinetic (when the desired state cannot be reached because of a lack of time) or thermodynamic (when a desired state is unstable).
About: This article is published in Physics Reports.The article was published on 2000-02-01 and is currently open access. It has received 235 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe submonolayer nucleation and growth of two-dimensional islands during deposition and show that the traditional mean-field treatment is quite successful in capturing the behavior of mean island densities, but it fails to predict island size distributions.

575 citations

Journal ArticleDOI
TL;DR: A review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate is provided in this paper, with a comparison between theory and experiment is used to highlight strengths and weaknesses in their understanding.
Abstract: When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or “ripple” structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement.

435 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the driving forces of self-organization mechanisms in semiconductor heteroepitaxy and showed that under certain conditions, these mechanisms and their interplay result in self-organized nanostructure arrays with a high degree of uniformity.

434 citations

Journal ArticleDOI
TL;DR: In this article, a review of the last two decades of progress in the theory of crystal surfaces in and out of equilibrium is reviewed, focusing on step meandering and bunching, which are two main forms of instabilities encountered on vicinal surfaces.
Abstract: The last two decades of progress in the theory of crystal surfaces in and out of equilibrium is reviewed. Various instabilities that occur during growth and sublimation, or that are caused by elasticity, electromigration, etc., are addressed. For several geometries and nonequilibrium circumstances, a systematic derivation provides various continuum nonlinear evolution equations for driven stepped (or vicinal) surfaces. The resulting equations are sometimes different from the phenomenological equations derived from symmetry arguments such as those of Kardar, Parisi, and Zhang. Some of the evolution equations are met in other nonlinear dissipative systems, while others remain unrevealed. The novel and original classes of equations are referred to as ``nonstandard.'' This nonstandard form suggests nontrivial dynamics, where phenomenology and symmetries, often used to infer evolution equations, fail to produce the correct form. This review focuses on step meandering and bunching, which are the two main forms of instabilities encountered on vicinal surfaces. Standard and nonstandard evolution scenarios are presented using a combination of physical arguments, symmetries, and systematic analysis. Other features, such as kinematic waves, some aspect of nucleation, and results of kinetic Monte Carlo simulations are also presented. The current state of experiments and confrontation with theories are discussed. Challenging open issues raised by recent progress, which constitute essential future lines of inquiries, are outlined.

187 citations


Cites background or methods from "Instabilities in crystal growth by ..."

  • ...There is now significant literature on the phenomenological modeling of flux J Politi et al., 2000 ....

    [...]

  • ...A detailed study Rusanen et al., 2002 based on kinetic Monte Carlo simulations revealed that the shape of the meander is consistent with the nonlinear theory developed for mound formation by Politi et al. 2000 ....

    [...]

  • ...Equation 3.46 is somewhat similar to that used in the context of growth on a high symmetry surface see Politi et al. 2000 for a review and proposed as a phenomenological model inferred from numerical simulations....

    [...]

  • ...Moreover, this analysis, which allowed extraction of the dynamics exponents, might be of interest for the problem of mound formation Politi et al., 2000 ....

    [...]

  • ...They can also lead to step bunching Politi et al., 2000 or to step meandering Nita and Pimpinelli, 2005 ....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a review of theoretical concepts and experimental results on the spontaneous formation and self-organization of SiGe quantum dots on silicon substrates, including morphological, structural and compositional properties.

183 citations

References
More filters
Book
01 Jan 1934
TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Abstract: Chapter 1: Stresses and Strains Chapter 2: Foundations of Plasticity Chapter 3: Elasto-Plastic Bending and Torsion Chapter 4: Plastic Analysis of Beams and Frames Chapter 5: Further Solutions of Elasto-Plastic Problems Chapter 6: Theory of the Slipline Field Chapter 7: Steady Problems in Plane Strain Chapter 8: Non-Steady Problems in Plane Strain

20,724 citations

Book
01 Jan 1968
TL;DR: Dislocations in Isotropic Continua: Effects of Crystal Structure on Dislocations and Dislocation-Point-Defect Interactions at Finite temperatures.
Abstract: Dislocations in Isotropic Continua. Effects of Crystal Structure on Dislocations. Dislocation-Point-Defect Interactions at Finite Temperatures. Groups of Dislocations. Appendixes. Author and Subject Indexes.

10,220 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc, and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2.
Abstract: It is shown that the free energy of a volume V of an isotropic system of nonuniform composition or density is given by : NV∫V [f 0(c)+κ(▿c)2]dV, where NV is the number of molecules per unit volume, ▿c the composition or density gradient, f 0 the free energy per molecule of a homogeneous system, and κ a parameter which, in general, may be dependent on c and temperature, but for a regular solution is a constant which can be evaluated. This expression is used to determine the properties of a flat interface between two coexisting phases. In particular, we find that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc , and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2 . The predicted interfacial free energy and its temperature dependence are found to be in agreement with existing experimental data. The possibility of using optical measurements of the interface thickness to provide an additional check of our treatment is briefly discussed.

8,720 citations

Journal ArticleDOI
TL;DR: This work ascribes this giant magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.
Abstract: We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example, with ${t}_{\mathrm{Cr}}=9$ \AA{}, at $T=4.2$ K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T. We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.

7,993 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis is made of the process whereby diffusion effects can cause the precipitation of grains of a second phase in a supersaturated solid solution, and the kinetics of this type of grain growth are examined in detail.

6,929 citations