scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Insulin Crystals Grown in Short-Peptide Supramolecular Hydrogels Show Enhanced Thermal Stability and Slower Release Profile.

TL;DR: In this article, two thermally stable insulin composite crystal formulations were obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels.
Abstract: Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a review of different non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal is presented, highlighting different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, nearinfrared, ultrasound, magnetic and electric fields.

24 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc)-FF) and RGD short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods.
Abstract: The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the early stages of the fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) self-assembly process with single-molecule resolution, the kinetics of fiber formation, the packaging of peptides within the fibers and the capacity of the peptides to reassemble after disruption (self-healing) in the presence of different metallic cations.
Abstract: Making use of the combination of multiparametric Fluorescence Lifetime Imaging Microscopy (FLIM) and single-molecule Fluorescence Lifetime Correlation Spectroscopy (FLCS), we have been able to study for the early stages of the fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) self-assembly process with single-molecule resolution, the kinetics of fiber formation, the packaging of the peptides within the fibers and the capacity of the peptides to reassemble after disruption (self-healing) in the presence of different metallic cations. Other techniques such as FTIR, TEM, DSC and DFT calculations support our findings. The impact that the mechanism of self-assembly has on the physical (rigidity and self-healing) properties of the resulting gels have also been evaluated by rheology. Calcium ions are able to promote the self-assembly of Fmoc-FF faster and more efficiently, forming more rigid hydrogels than do cesium ions. The reasons behind this effect may be explained by the different capacities that these two cations have to coordinate with the peptide, modulate its hydrophobicity and stabilize the water–solute interphase. These findings shed light on the impact that small changes have on the process of self-assembly and can help to understand the influence of the environmental conditions on the in vivo uncontrolled self-assembly of certain proteins.

14 citations

Journal ArticleDOI
TL;DR: This work shows that a magnetic field can be used to control the mechanical properties of the gels, but what is probably most exciting is that the gelling component aligns in a magnetic Field and so results in anisotropic crystals being formed.
Abstract: Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks.

8 citations

References
More filters
Journal ArticleDOI
TL;DR: Kevin Shakesheff investigates new methods of engineering polymer surfaces and the application of these engineered materials in drug delivery and tissue engineering.
Abstract: s, and 360 patents, and edited 12 books. He has also received over 80 major awards including the Gairdner Foundation International Award, Lemelson-MIT prize, ACS’s Applied Polymer Science and Polymer Chemistry Awards, AICHE’s Professional Progress, Bioengineering, Walker and Stine Materials Science and Engineering Awards. In 1989, Dr. Langer was elected to the Institute of Medicine of the National Academy of Sciences, and in 1992 he was elected to both the National Academy of Engineering and the National Academy of Sciences. He is the only active member of all three National Academies. Kevin Shakesheff was born in Ashington, Northumberland, U.K., in 1969. He received his Bacheclor of Pharmacy degree from the University of Nottingham in 1991 and a Ph.D. from the same institution in 1995. In 1996 he became a NATO Postdoctoral Fellow at MIT, Department of Chemical Engineering. He is currently an EPSRC Advanced Fellow at the School of Pharmaceutical Sciences, The University of Nottingham. His research group investigates new methods of engineering polymer surfaces and the application of these engineered materials in drug delivery and tissue engineering. 3182 Chemical Reviews, 1999, Vol. 99, No. 11 Uhrich et al.

2,532 citations

Journal ArticleDOI
TL;DR: Some of the key characteristics of protein therapeutics are overviewed, a new classification of these proteins according to their pharmacological action is suggested and this article summarizes the more than 130 protein therapeuticals used currently and suggests a new classifications.
Abstract: Once a rarely used subset of medical treatments, protein therapeutics have increased dramatically in number and frequency of use since the introduction of the first recombinant protein therapeutic--human insulin--25 years ago. Protein therapeutics already have a significant role in almost every field of medicine, but this role is still only in its infancy. This article overviews some of the key characteristics of protein therapeutics, summarizes the more than 130 protein therapeutics used currently and suggests a new classification of these proteins according to their pharmacological action.

1,654 citations

Journal ArticleDOI
TL;DR: Recent advances in formulation and delivery strategies, such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs are highlighted and discussed.
Abstract: The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies — such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs — and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.

1,274 citations

Journal ArticleDOI
TL;DR: In this paper, the self assembly of peptide hydrogelators that carry aromatic substituents can be modeled by a novel nanocylindrical architecture, which is consistent with the structures observed in TEM and the data obtained by a variety of spectroscopic techniques.
Abstract: The self assembly of peptide hydrogelators that carry aromatic substituents can be modeled by a novel nanocylindrical architecture. The proposed model suggests that the nanocylinders are formed by anti-parallel β-sheets interlocked by the π-stacking interactions of fluorenyl groups and phenyl rings. This explanation is consistent with the structures observed in TEM and the data obtained by a variety of spectroscopic techniques.

803 citations

Journal ArticleDOI
TL;DR: This review rationalises the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, paving the way to a more rational design of nanomaterials based on aromatic peptides.
Abstract: Aromatic peptide amphiphiles are gaining popularity as building blocks for the bottom-up fabrication of nanomaterials, including gels. These materials combine the simplicity of small molecules with the versatility of peptides, with a range of applications proposed in biomedicine, nanotechnology, food science, cosmetics, etc. Despite their simplicity, a wide range of self-assembly behaviours have been described. Due to varying conditions and protocols used, care should be taken when attempting to directly compare results from the literature. In this review, we rationalise the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, (i) the N-terminal aromatic component, (ii) linker segment, (iii) peptide sequence, and (iv) C-terminus. It is clear that the molecular structure of these components significantly influences the self-assembly process and resultant supramolecular architectures. A number of modes of assembly have been proposed, including parallel, antiparallel, and interlocked antiparallel stacking conformations. In addition, the co-assembly arrangements of aromatic peptide amphiphiles are reviewed. Overall, this review elucidates the structural trends and design rules that underpin the field of aromatic peptide amphiphile assembly, paving the way to a more rational design of nanomaterials based on aromatic peptide amphiphiles.

629 citations

Related Papers (5)