scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts

01 Feb 2020-Aquaculture (Elsevier)-Vol. 516, pp 734621
TL;DR: The methodology defined here can be a powerful tool to predict the magnitude of environmental benefits that can be expected from new and complex production systems and to show potential impact transfer between spatial scales.
About: This article is published in Aquaculture.The article was published on 2020-02-01 and is currently open access. It has received 40 citations till now. The article focuses on the topics: Integrated multi-trophic aquaculture & Holothuria scabra.

Summary (3 min read)

1 Introduction

  • LCA has been extensively applied to aquaculture systems, with 65 studies and 179 aquaculture systems reviewed in a recent meta-analysis (Bohnes et al., 2018) .
  • LCA has been used mostly to identify problematic stages or components of systems and to compare alternatives such as intensive vs. extensive systems, monoculture vs. polyculture and open water vs. closed recirculating systems.
  • The present study examined environmental benefits and trade-offs for finfish monoculture of shifting to an open-water IMTA system co-culturing suspended sea cucumber culture beneath finfish cages, by assessing the latter's mitigation potential at local and global scales.

2.2 Inventories

  • The LCIs of both systems were developed and their environmental impacts were estimated using SimaPro 8.5 software and its databases (PRé Consultants, Amersfoot, Netherlands).
  • The ecoinvent 3.0 database was used for all background data except feed ingredients, which were taken from the French EcoAlim v.1.3 database.
  • See the Supplementary Material for detailed LCIs.

2.2.1 Description of the monoculture system and its animal production parameters

  • The finfish monoculture system described a scenario of a semi-industrial red-drum farm with floating sea cages located on Mayotte Island, Indian Ocean (see Chary et al., 2019) .
  • Culture cycles are 20 months long with progressive harvests from month 13.
  • Harvested products range from portion-size to 3000 g per individual.
  • No chemotherapeutants (e.g. antibiotics) are used during finfish production.
  • Feed consists of commercial pressed pellets produced on La Reunion Island and imported to the farm by sea shipping.

2.2.2 Assumptions and data sources for the monoculture

  • Annual production data (i.e. feed inputs and finfish harvest volumes) were taken from farm simulations under routine conditions with the FINS farm-scale model (Chary et al., 2019) .
  • FINS is a simple model combining farm production and waste emission modules to simulate farm production, feed requirements and waste discharge for finfish sea-cage systems.
  • FINS includes several submodels (e.g. individual growth model, mass balance model), which were parametrized for red drum.
  • Data on the ingredient mix were provided by a commercial feed-mill manager in La Reunion (data not shown due to confidentiality).

2.2.3 Sea cucumber system assumptions and data sources

  • Sea cucumbers must be processed to obtain a dry cooked commercial product called "bêche-de-mer".
  • The protein content in the final product is 51.2% (Average from Ozer et al., 2004) giving an edible protein content in fresh sea cucumbers of 3.8%.
  • Processing stages into bêche-de-mer were not included in the LCA system boundaries.

2.2.4 Individual bioenergetic model and population model for the sea cucumber

  • On-farm sea cucumber biomass dynamics were calculated by multiplying the number of individuals by the individual weight predicted by DEB.
  • The population dynamics model of sea cucumber represents (i) initial seeding (initial condition), (ii) culture-harvesting strategies, (iii) natural mortality and (iv) culture losses (e.g. poaching, predation).
  • Since maximum stocking density is reached at the end of the culture cycle, it also corresponds to the system's productivity.

2.2.5 Grow-out emissions from monoculture and IMTA

  • In the sea cucumber LCI, net N emissions, net P solid and dissolved emissions and net ThOD were calculated as solid and dissolved emissions from sea cucumber growth minus avoided emissions associated with IFF.
  • ThOD coefficients for sea cucumber feces were estimated as 0.764 kg O 2 per kg.

2.2.6 Inputs imported to Mayotte

  • On Mayotte, most economic inputs used on the farm are imported from La Reunion or France.
  • Therefore, most processes were adapted to include sea transport (1700 km from La Reunion and 9800 km from France) by transoceanic ship from the closest trading ports, and land transport (30 km) by truck from the port to the farm facilities.
  • Fuels were assumed to be imported from Singapore (7000 km).

2.3.2 Life cycle impact assessment and uncertainties

  • It is important to include uncertainty analysis in comparative LCAs, since deterministic results that do not include significance information can lead to oversimplified conclusions (Mendoza Beltran et al., 2018) , especially in ex-ante analysis.
  • Uncertainties due to unrepresentativeness (i.e. degree of reliability, completeness, temporal correlation, geographical correlation, technological correlation and sample size) of foreground processes were estimated with the Numerical Unit Spread Assessment Pedigree following the method of Henriksson et al. (2014) and included in the LCI of the monoculture and the IMTA.
  • The authors simulated 1000 Monte Carlo runs to propagate these uncertainties to the LCIA results per impact category, as commonly done in LCA uncertainty analysis (Avadí and Fréon, 2013) .
  • A paired t-test was used to determine statistical significance of the systems' difference in environmental impacts.
  • The null hypothesis in the t-test was that IMTA and monoculture systems have equal environmental impacts per functional unit.

3.2 LCIA results

  • The authors discuss the mitigation potential of the IMTA system in terms of i) the bioremediation efficiency of sea cucumber system co-cultured with finfish and ii) comparison of the impacts of the finfish monoculture and IMTA systems estimated by LCA.
  • Perspectives are then discussed for decreasing the IMTA's benthic impact and overall lifecycle impacts.

4.1 Sea cucumber bioremediation potential

  • The waste mitigation potential of sea cucumbers may not be sufficient to significantly reduce environmental effects of solid waste deposition on the seabed, and additional analyses are necessary to fully assess local ecological effects of IMTA systems.
  • This is also true to account for other emissions (e.g. GHGs) occurring at the farm and other life-cycle stages and that can have impacts at the global scale.
  • Therefore, to compare environmental performances of monoculture and IMTA systems fully, the analysis must be supplemented with more holistic impact assessment and related to the main functions of both systems, as performed in the LCA.

4.2 LCIA: comparison of monoculture and IMTA

  • Compared to the monoculture, the IMTA system tended to decrease EU and NPPU impacts but increase CC and CED.
  • This eco-intensification reduced the overall amount of feed used per unit of biomass produced, which explained the decrease in NPPU.
  • Ecological intensification of aquaculture (Aubin et al., 2019) , through IMTA, shifted environmental burdens to energy-related global impact categories such as CC and CED.
  • These components were not visible in the contribution analysis because of the large difference in production scales.
  • Close integration of farm activities and infrastructure becomes less likely in IMTA farms with more balanced production between primary and secondary species; therefore, environmental impacts will likely increase if sea cucumber production increases.

4.3 Other perspectives to improve environmental performances

  • Local and global environmental benefits of the IMTA system were generally low because of the low productivity of sea cucumbers; increasing them will require finding practical methods to intensify sea cucumber production.
  • One option is to investigate the choice and design of rearing structures that can increase the culture surface area and thus the bioremediation potential of the system.
  • With a threelevel structures, the CS could be 'virtually' divided by three, i.e. 45:1 and WEE could increase to 2.20%.
  • Finding practical farming methods for sea cucumbers to be added to a pre-existing monoculture system thus remains a challenge.

Did you find this useful? Give us your feedback

Citations
More filters
01 Jan 2013
TL;DR: In this paper, the role of modelled resuspension dynamics in determining impacts was evaluated at five farms with contrasting flow regimes to evaluate the role played by modelled sediment ressuspension dynamics and showed that the association between current flow, sediment resuspence and ecological impacts is more complex than presently encapsulated within DEPOMOD.
Abstract: Sediment resuspension is an important factor in controlling the impact of any localised pointsource impacts such as salmon farms; at high-flow (dispersive) sites, resuspension can significantly reduce potential effects. Depositional modelling (DEPOMOD) is widely used to predict localisedseabed impacts and includes an optional flow-related resuspension module. This study examined the observed impacts at 5 farms with contrasting flow regimes to evaluate the role of modelled resuspension dynamics in determining impacts. When resuspension was included in the model, net particle export (i.e. no significant net downward flux of organic material) was predicted at the most dispersive sites. However, significant seabed effects were observed, suggesting that although the model outputs were theoretically plausible, they were inconsistent with the observational data. When the model was run without resuspension, the results were consistent with the field survey data. This retrospective validation allows a more realistic estimation of the depositional flux required, suggesting that approximately twice the flux was needed to induce an effect level at the dispersive sites equivalent to that at the non-dispersive sites. Moderate enrichment was associated with a fluxof ~0.4 and ~1 kg m-2 yr-1, whilst highly enriched conditions occurred in response to 6 and 13 kg m-2 yr-1, for low and dispersive sites, respectively. This study shows that the association between current flow, sediment resuspension and ecological impacts is more complex than presently encapsulated within DEPOMOD. Consequently, where depositional models are employed at dispersive sites, validation data should be obtained to ensure that the impacts are accurately predicted.

37 citations

Journal ArticleDOI
TL;DR: It is asserted that polyculture practices can ensure the transition of aquaculture towards sustainable development and several challenges must be addressed to facilitate polyculture development across the world.
Abstract: Human population growth has increased demand for food products, which is expected to double in coming decades. Until recently, this demand has been met by expanding agricultural area and intensifying agrochemical-based monoculture of a few species. However, this development pathway has been criticised due to its negative impacts on the environment and other human activities. Therefore, new production practices are needed to meet human food requirements sustainably in the future. Herein, we assert that polyculture practices can ensure the transition of aquaculture towards sustainable development. We review traditional and recent polyculture practices (ponds, recirculated aquaculture systems, integrated multi-trophic aquaculture, aquaponics, integrated agriculture-aquaculture) to highlight how they improve aquaculture through the coexistence and interactions of species. This overview highlights the importance of species compatibility (i.e. species that can live in the same farming environment without detrimental interactions) and complementarity (i.e. complementary use of available resources and/or commensalism/mutualism) to achieve efficient and ethical aquaculture. Overall, polyculture combines aspects of productivity, environmental protection, resource sharing, and animal welfare. However, several challenges must be addressed to facilitate polyculture development across the world. We developed a four-step conceptual framework for designing innovative polyculture systems. This framework highlights the importance of (i) using prospective approaches to consider which species to combine, (ii) performing integrated assessment of rearing environments to determine in which farming system a particular combination of species is the most relevant, (iii) developing new tools and strategies to facilitate polyculture system management, and (iv) implementing polyculture innovation for relevant stakeholders involved in aquaculture transitions.

30 citations

Journal ArticleDOI
TL;DR: In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Abstract: The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.

29 citations

Journal ArticleDOI
TL;DR: The present study suggested the existence of substantial benefits of an integrated aquaculture between these echinoderm species, that could promote the environmental and economic sustainability of their production on a large-scale and reduce the total waste.

29 citations

Journal ArticleDOI
30 Jul 2021
TL;DR: In this paper, Fidan, Linda Fourdain, Marco Frederiksen, Archil Guchmanidze, Housam Hamza, Jessica Harvey, Magda Nenciu, Galin Nikolov, Victor Niţa, Muhammed Dogan Ozdemir, Elitsa Petrova-Pavlova, Gabriel Popescu, Ferit Rad, Safak Seyhaneyildiz Can, John A. Theodorou, Behnan Thomas, Nicolo Tonachella, Ekaterina Tribilustova, Ir
Abstract: Additional co-authors: Dilek Fidan, Linda Fourdain, Marco Frederiksen, Archil Guchmanidze, Housam Hamza, Jessica Harvey, Magda Nenciu, Galin Nikolov, Victor Niţa, Muhammed Dogan Ozdemir, Elitsa Petrova-Pavlova, Gabriel Popescu, Ferit Rad, Safak Seyhaneyildiz Can, John A. Theodorou, Behnan Thomas, Nicolo Tonachella, Ekaterina Tribilustova, Irina Yakhontova, Ahmet Faruk Yesilsu, Guzel Yucel-Gier

15 citations


Cites background from "Integrated multi-trophic aquacultur..."

  • ...Environmental sustainability of aquaculture is a complex issue involving effects at local, regional and global scales as a consequence of aquaculture treatments production (benthic deterioration, eutrophication, reduction fishery for fishmeal and fish oil production and emissions from production wastes) and industrial processes involved in the products’ value chain (Chopin et al., 2012; Edwards, 2015; Chary et al., 2020)....

    [...]

  • ...…of aquaculture treatments production (benthic deterioration, eutrophication, reduction fishery for fishmeal and fish oil production and emissions from production wastes) and industrial processes involved in the products’ value chain (Chopin et al., 2012; Edwards, 2015; Chary et al., 2020)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Results of this study indicate that seabass rearing has lower mean impact than seabream rearing for all the impact categories considered, however, no significant differences were observed in all theimpact categories except the global warming.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors adapted the concept of ecological intensification to fish farming using agroecological principles and the ecosystem services framework and developed an assessment tool that was used as a basis for co-building evolution scenarios.
Abstract: Ecological intensification is a new concept in agriculture that addresses the double challenge of maintaining a level of production sufficient to support needs of human populations and respecting the environment in order to conserve the natural world and human quality of life. This article adapts this concept to fish farming using agroecological principles and the ecosystem services framework. The method was developed from the study of published literature and applications at four study sites chosen for their differences in production intensity: polyculture ponds in France, integrated pig and pond polyculture in Brazil, the culture of striped catfish in Indonesia and a recirculating salmon aquaculture system in France. The study of stakeholders' perceptions of ecosystem services combined with environmental assessment through Life Cycle Assessment and Emergy accounting allowed development of an assessment tool that was used as a basis for co-building evolution scenarios. From this experience, ecological intensifica-tion of aquaculture was defined as the use of ecological processes and functions to increase productivity, strengthen ecosystem services and decrease disservices. It is based on aquaecosystem and biodiversity management and the use of local and traditional knowledge. Expected consequences for farming systems consist of greater autonomy, efficiency and better integration into their surrounding territories. Ecological intensification requires territorial governance and helps improve it from a sustainable development perspective.

48 citations

Journal ArticleDOI
TL;DR: The model could not predict adequately the flux to traps spaced 2 m apart in the high-flux zone underneath cages where variability between trap observations was high and the averaged model flux predictions resulted in a performance of ± 49%.
Abstract: A model, composed of coupled particle tracking and benthic response modules, for predicting waste solids flux and benthic impacts of gilthead sea bream (Sparus aurata L) and sea bass (Dicentrarchus labrax L) aquaculture, was tested at six sites with different hydrodynamics, bathymetries and biomasses in the Aegean and Ionian Seas, Eastern Mediterranean with observations of sediment trap flux and benthic impact indicators Seven sediment trap validation studies were conducted that varied in design with traps deployed either on the sea bed, attached to nets or in the water column Model predictions of flux to traps spaced 5 m apart up to 50 m from the cages over a 13 d period were statistically significant (r2 = 061, n = 57, p ≤ 005) However, the model could not predict adequately the flux to traps spaced 2 m apart in the high-flux zone underneath cages where variability between trap observations was high In this high-flux zone underneath cages, the averaged model flux predictions resulted in a performance of ± 49% Statistically significant relationships were established at four sites; between modelled flux and either benthic fauna impact indicator species (S), abundance (A), A/S ratio, Shannon Wiener Index or Biomass Fractionation Index (BFI), (r2 = 082, 060, 057, 067 and 048, respectively; n = 24, p ≤ 005) Two other sites, which did not exhibit an abundance peak in enriched zones, did not fit these relationships Using relative abundance of taxonomic groups, a modelled flux of 41 g m-2 d-1 was a useful boundary; on either side of this boundary, clear trends occurred in pollutant tolerant and intolerant species

47 citations

Journal ArticleDOI
01 Jan 2000-Analyst
TL;DR: In this paper, the authors examined the relationship between the official chemical oxygen demand (COD) and the response values of a photocatalytic COD sensor which has been developed to overcome several of the problems associated with the official COD methods.
Abstract: The oxidation behavior of twenty organic chemicals from four different classes (sugars, benzene derivatives, alcohols and carboxyl acids) were investigated using the official chemical oxygen demand (COD) methods (i.e., permanganate and dichromate methods) and their oxidation levels compared with the theoretical oxygen demand (ThOD) values. In addition, the correlation between the official COD and ThOD values was also examined using the CODMn, Cr method and their relative merits were considered. With the same set of samples, this study also examined the relationship between ThOD values and the response values of a photocatalytic COD sensor which has been developed to overcome several of the problems associated with the official COD methods. The relationship of the response values determined by the photocatalytic COD sensor to those ThOD values was obtained: r = 0.96 for the 20 organic chemicals from each different chemical class.

45 citations

Journal Article
TL;DR: In this article, the chemical compositions of sea cucumbers harvested from the Marmara Sea during the spring and summer in different months were compared using two different methods: evisceration by cutting the anus, followed by removal of the viscera by firmly squeezing the body.
Abstract: This study compared the chemical compositions of sea cucumbers harvested from the Marmara Sea during the spring and summer in different months. They were processed using two different methods. The first method was evisceration by cutting the anus, followed by removal of the viscera by firmly squeezing the body. The second method was evisceration by cutting along the length of the body, followed by removal of the viscera. All of the sea cucumbers were boiled and dried. Their water, ash, protein, and fat contents were measured and recorded prior to and after processing. The moisture content of fresh sea cucumber decreased from 85% to 6.5% when it was processed with the first method, while the post-processing water content with second method came out to be 6%. Fresh sea cucumber (based on dry weight) contained 5.78–9.53% protein and 0.06–0.37% fat. The approximate percent composition of fat, protein, and ash were determined to be 1.17–2.44%, 39.77–59.57%, and 17.91–44.53% respectively for the first method; and 1.71–2.31%, 40.97–60.18%, and 29.82–40.04% for respectively for the second method. No significant differences were found for the second method in the water, ash, and fat content. Protein content was significantly lower for the second method in July. There was a significant difference (p<0.05) in the water, ash, fat, and protein content for the first method.

44 citations

Frequently Asked Questions (1)
Q1. What are the contributions in "Integrated multi-trophic aquaculture of red drum (sciaenops ocellatus) and sea cucumber (holothuria scabra): assessing bioremediation and life-cycle impacts" ?

In this paper, the authors evaluated the environmental sustainability of aquaculture using a holistic and multi-scale framework, where organisms of different trophic levels are co-cultured on the same farm.