scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrated value of shale gas development: A comparative analysis in the United States and China

TL;DR: In this article, the authors explored the differences of the integrated value of shale gas development between the US and China and analyzed the reasons for these differences, including market demand, cost and price, technologies, gas content, water contamination/supply, and policy.
Abstract: This paper is to explore the differences of the integrated value of shale gas development between the US and China. On the basis of an extensive literature survey and 17 in-depth personal interviewswith domestic experts, a fuzzy-AHP model is exploited herein to evaluate the development of shale gas in the US and China. The fuzzy-AHP model encompasses 21 indicators, which can be further categorized into 4 critical factors: (1) market prospects, (2) environmental impacts, (3) conditions of resource & occurrence, and (4) general conditions of extraction & utilization. Among the 21 indicators, market demand, cost and price, technologies, gas content, water contamination/supply, and policy contribute significantly to the integrated value of the model. According to the integrated value of the shale gas development in the US and China, the comparative analysis suggests that there is a large gap between these two countries. Furthermore, differences in shale gas development between the US and China are identified and reasons for these differences are analyzed. The US-China comparative analysis and the experience from US suggest that government policies will be crucial to determine the future development of shale gas in China and other countries.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the shale gas transport process during shale gas production is presented, and the corresponding multi-scale simulation models that describe the gas multiscale transport mechanisms and accurately predict the amount of shale production are explained.

137 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent advances of molecular simulation on gas adsorption/desorption and diffusion in the shale matrix is reviewed and further developments of the molecular simulation method in shale gas production are also discussed.
Abstract: Shale gas is becoming an increasingly promising alternative energy resource because of its high efficiency and environment-friendly characteristic. The amount of adsorbed gas on the shale matrix surfaces and dissolved gas in the shale matrix bulk is the dominant factor in the long-term productivity of shale reservoir. Although experimental measurements have been extensively carried out to investigate the gas adsorption and diffusion properties in the shale matrix, they cannot provide the detailed information on the microscopic transport mechanism of shale gas during the gas production process. Molecular simulation can accurately visualize the gas adsorption/desorption and diffusion processes in the shale matrix. In the present study, the recent research advances of molecular simulation on gas adsorption/desorption and diffusion in the shale matrix are reviewed. Firstly, the density functional theory (DFT) for shale gas molecule desorption/adsorption on the surface of the matrix crystal is illustrated. Then, the grand canonical Monte Carlo (GCMC) method predicting the amount of shale gas desorption/adsorption in the shale matrix crystal is introduced. Finally, molecular dynamics simulation (MD) for gas diffusion in the shale matrix is elucidated. Further developments of the molecular simulation method in shale gas production are also discussed.

95 citations

Journal ArticleDOI
TL;DR: As the typical unconventional reservoir, shale gas is believed to be the most promising alternative for the conventional resources in future energy patterns, attracting more and more attention from the energy industry as discussed by the authors.
Abstract: As the typical unconventional reservoir, shale gas is believed to be the most promising alternative for the conventional resources in future energy patterns, attracting more and more attention thro...

83 citations

Journal ArticleDOI
TL;DR: A state-of-the-art review of existing research works focusing on the operation and/or expansion planning problems of ESs in the context of EH, with a focus on the application areas of the EH.

69 citations

Posted Content
TL;DR: In this article, the authors investigated the impact of the North American shale gas revolution on price movement regimes in North American and European gas markets, using the Markov regime-switching model.
Abstract: This paper investigates the impact of the North American shale gas revolution on price movement regimes in the North American and European gas markets, using the Markov regime-switching model. It then measures price spreads between oil and gas from 1998 to 2015 to identify the impact of the revolution on the relationship between oil and regional gas prices. The results show that the typical movement regime of Henry Hub prices changes from 'slightly upward' to 'sharply downward'. In addition, the clear seasonal effect of Henry Hub prices has disappeared after the shale gas revolution. The typical movement of national balancing point (NBP) prices has changed gradually from a 'sharply up-ward' regime to the alternative regimes between 'sharply downward' and 'slightly upward', tending to follow oil prices. This indicates that the shale gas revolution has had little impact on NBP price movement. Meanwhile, Henry Hub prices have decoupled from WTI prices, while NBP and Brent prices have continued to exhibit a long-term equilibrium level around which they have swung in the short timeframe since the shale gas revolution. Pertinent energy policy makers and energy market participants should pay attention to these changes and adjust their trade, production and investment strategies accordingly.

69 citations

References
More filters
Journal ArticleDOI
TL;DR: The Analytic Hierarchy Process (AHP) is a theory of measurement through pairwise comparisons and relies on the judgements of experts to derive priority scales that measure intangibles in relative terms.
Abstract: Decisions involve many intangibles that need to be traded off To do that, they have to be measured along side tangibles whose measurements must also be evaluated as to, how well, they serve the objectives of the decision maker The Analytic Hierarchy Process (AHP) is a theory of measurement through pairwise comparisons and relies on the judgements of experts to derive priority scales It is these scales that measure intangibles in relative terms The comparisons are made using a scale of absolute judgements that represents, how much more, one element dominates another with respect to a given attribute The judgements may be inconsistent, and how to measure inconsistency and improve the judgements, when possible to obtain better consistency is a concern of the AHP The derived priority scales are synthesised by multiplying them by the priority of their parent nodes and adding for all such nodes An illustration is included

6,787 citations

Journal Article
TL;DR: The Analytic Hierarchy Process (AHP) as discussed by the authors is a theory of measurement through pairwise comparisons and relies on the judgements of experts to derive priority scales, these scales are these scales that measure intangibles in relative terms.

5,663 citations

Journal ArticleDOI
17 May 2013-Science
TL;DR: Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help effectively manage water-quality risks associated with unconventional gas industry today and in the future.
Abstract: Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.

1,263 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations, focusing on methane emissions, and find that 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life time of a well.
Abstract: We evaluate the greenhouse gas footprint of natural gas obtained by high- volume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life- time of a well. These methane emissions are at least 30% more than and perhaps more than twice as great as those from conventional gas. The higher emissions from shale gas occur at the time wells are hydraulically fractured—as methane escapes from flow-back return fluids—and during drill out following the fracturing. Methane is a powerful greenhouse gas, with a global warming potential that is far greater than that of carbon dioxide, particularly over the time horizon of the first few decades following emission. Methane contributes substantially to the greenhouse gas footprint of shale gas on shorter time scales, dominating it on a 20-year time horizon. The footprint for shale gas is greater than that for conventional gas or oil when viewed on any time horizon, but particularly so over 20 years. Compared to coal, the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.

1,261 citations