scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrating pests and pathogens into the climate change/food security debate

01 Jul 2009-Journal of Experimental Botany (Oxford University Press)-Vol. 60, Iss: 10, pp 2827-2838
TL;DR: More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Abstract: While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The efficacy of Ampelomyces quisqualis against zucchini powdery mildew was found to be improved under higher temperature and CO2 conditions, and changed environmental values on some physiological parameters on the production of mycotoxins as well as on disease management were also considered on selected pathosystems.
Abstract: Increases in carbon dioxide (CO2) and temperature are expected to induce complex effects on plant pathogens. The results of studies on the effects of climate change on a number of pathosystems, such as the downy and powdery mildew of grapevines, and on several pathogens of vegetable crops, such as rocket, basil, beet and zucchini, have been analysed in this review. In the reviewed works, plants were grown in controlled environment facilities (phytotrons) under six different simulated climatic conditions: a standard CO2 concentration (400–450 ppm) with a standard (ranging from 18 to 22/24 °C) and elevated temperature (5 °C higher than standard), and elevated CO2 (800–850 ppm) under a standard and elevated temperature. When the CO2 level and the temperature were increased, an increase was observed of powdery mildew on zucchini, Alternaria leaf spot on rocket salad, black spot and downy mildew on basil, Allophoma tropica on lettuce and Phoma leaf spot on garden beet. Variable effects were instead observed when individual climate parameters were taken into consideration. The effects of changed environmental values on some physiological parameters on the production of mycotoxins as well as on disease management were also considered on selected pathosystems. CO2 concentration and temperature proved to influence disease severity and mycotoxin production in different ways. As far as the application of biocontrol agents is concerned, the efficacy of Ampelomyces quisqualis against zucchini powdery mildew was found to be improved under higher temperature and CO2 conditions. The results obtained with different host/pathogen combinations will allow to develop adaptation strategies for disease management and to provide the seed industry with useful information in order to develop new cultivars that will be more adapted/adaptable to the changing conditions. The usefulness and limitations of studies carried out under controlled environment conditions are critically discussed.

29 citations

Journal Article
TL;DR: The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events.
Abstract: SYNOPSIS This report summarizes and discusses current knowledge on the impact that climate change can have on occupational safety and health (OSH), with a particular focus on the Americas. Worker safety and health issues are presented on topics related to specific stressors (e.g., temperature extremes), climate associated impacts (e.g., ice melt in the Arctic), and a health condition associated with climate change (chronic kidney disease of non-traditional etiology). The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events. Also discussed are the actions that OSH professionals can take to ensure worker health and safety in the face of climate change.

29 citations


Cites background from "Integrating pests and pathogens int..."

  • ...Because of the anticipated rise in rate, range, and duration of the growth periods for pests and weeds, pesticide use is expected to increase (44)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, climate-smart cropping systems should be designed with three objectives: reducing greenhouse gas (GHG) emissions, adapting to changing and fluctuating climate and environment, and securing food production sustainably.
Abstract: Climate-smart cropping systems should be designed with three objectives: reducing greenhouse gas (GHG) emissions, adapting to changing and fluctuating climate and environment, and securing food production sustainably. Agriculture can improve the net GHG emissions balance via three levers: less N2 O, CH4 and CO2 emissions, more carbon storage, and green energy production (agrifuels, biogas). Reducing the application of mineral N fertilizer is the main option for reducing N2 O emissions either directly or by increasing the proportion of legumes in the rotation. The most promising options for mitigating CH4 emissions in paddy fields are based on mid-season drainage or intermittent irrigation. The second option is storing more carbon in soil and biomass by promoting no-tillage (less fuel, crop residues), sowing cover crops, introducing or maintaining grasslands and promoting agroforestry. Breeding for varieties better adapted to thermal shocks and drought is mainly suggested as long-term adaptation to climate change. Short-term strategies have been identified from current practices to take advantage of more favorable growing conditions or to offset negative impacts: shifting sowing dates, changing species, cultivars and crop rotations, modifying soil management and fertilization, introducing or expanding irrigation. Some crops could also move to more suitable locations. Model-based tools and site-specific technologies should be developed to optimize, support and secure farmer's decisions in a context of uncertainty and hazards. Most of the adaptation and mitigation options are going in the same way but trade-offs will have to be addressed (e.g. increasing the part of legumes will be possible only with significant breeding efforts). This will be a challenge for designing cropping systems in a multifunctional perspective.

29 citations


Cites background from "Integrating pests and pathogens int..."

  • ...In addition, emergent pests and diseases may result in dramatic crop damages (Gregory et al., 2009)....

    [...]

Dissertation
01 Jan 2014
TL;DR: In this paper, a case study was conducted in the Central Rift Valley, which represents major cereal-based farming systems of the semi-arid environments of Ethiopia, and two well-accepted crop models were used to evaluate future adaptation options for maize production.
Abstract: Key words: Climate change, Adaptation, Crop modelling, Uncertainty, Maize (Zea mays), Central Rift Valley. Smallholder farmers in Ethiopia have been facing severe climate related hazards, in particular highly variable rainfall and severe droughts that negativelyaffect their livelihoods.Anticipated climate change is expected to aggravate some of the existing challenges and impose new risks beyond the range of current experiences. This study aimed at understanding current climate variability and future climate change and associated impacts, and providing insights on current climate risk management strategies and future adaptation options for adapting agriculture, in particular maize production.The study was conducted in the Central Rift Valley, which represents major cereal-based farming systems of the semi-arid environments of Ethiopia. A second case study area, Kobo Valley was also used for additional analysis in part of the study. Empirical statistical analyses, field survey methods, and a systems analytical approach, using field experimental data in combination with crop-climate simulation modelling were used to achieve the objectives of the study.Crop growth simulation modelling was carried out using two well-accepted crop models, which is an innovative feature of the methodology used in this thesis. The analysis revealed that rainfall exhibited high inter-annual variability (coefficient of variation 15-40%) during the period 1977-2007 in the CRV. The mean annual temperature significantly increased with 0.12 to 0.54 oC per decade during 1977-2007. Projections for future climate suggested that annual rainfall will change by -40 to +10% and the annual temperature is expected to increase in the range of 1.4 to 4.1 oC by 2080s. Simulated water-limited yields are characterized by high inter-annual variability (coefficient of variation 36%) and about 60% of this variability is explained by the variation in growing season rainfall. Actual yields of maize in the CRV are only 28-30% of the simulated water-limited yield. Analysis of climate change scenarios showed that maize yield will decrease on average by 20% in the 2050s relative to a baseline climate due to an increase in temperature and a decrease in growing season rainfall. The negative impact of climate change is very likely, however, the extent of the negative impact has some uncertainties ranging from -2 to -29% depending on crop model and climate change scenario. From the selection of models used, it was concluded that General Circulation Models to assess future climate are the most important source of uncertainty in this study. In response to perceived impacts, farm households are implementing various coping and adaptation strategies. The most important current adaptive strategies include crop selection, adjusting planting time, in situ moisture conservation and income diversification. Lack of affordable technologies, high costs for agricultural inputs, lack of reliable information on weather forecasts, and insecure land tenure systems were identified as limiting factors of farmers’ adaptive capacity. The crop model-based evaluation of future adaptation options indicates that increasing nitrogen fertilization, use of irrigation and changes in planting dates can compensate for some of the negative impacts of climate change on maize production. Developing more heat tolerant and high yielding new cultivars is critical to sustain crop production under future climate change. It was clear from the study that enabling strategies targeted at agricultural inputs, credit supply, market access and strengthening of local knowledge and information services need to become an integral part of government policies to assist farmers in adapting to the impacts of current climate variability and future climate change.

28 citations

Journal ArticleDOI
11 Jun 2014-PLOS ONE
TL;DR: Quantifying average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect suggests that increases in pesticide application rates may be a means to maintain soybean production in response to rising minimum daily temperatures and potential increases in pest pressures.
Abstract: Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide) applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year) can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999–2013) from −28.6°C (Minnesota) to −5.1°C (Louisiana). Although soybean yields (per hectare) did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare) increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977–2013) indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023) showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising minimum daily temperatures and potential increases in pest pressures.

28 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Book
01 Jul 2001
TL;DR: In this paper, the authors set the stage for impact, adaptation, and vulnerability assessment of climate change in the context of sustainable development and equity, and developed and applied scenarios in Climate Change Impact, Adaptation, and Vulnerability Assessment.
Abstract: Summary for policymakers Technical summary Part I. Setting the Stage for Impact, Adaptation, and Vulnerability Assessment: 1. Overview 2. Methods and tools 3. Development and application of scenarios in Climate Change Impact, Adaptation, and Vulnerability Assessment Part II. Sectors and Systems: Impacts, Adaptation, and Vulnerability: 4. Hydrology and water resources 5. Natural and managed ecosystems 6. Coastal zones and marine ecosystems 7. Energy, industry, and settlements 8. Financial services 9. Human health Part III. Regional Analyses: Impacts, Adaptation, and Vulnerability: 10. Africa 11. Asia 12. Australasia 13. Europe 14. Latin America 15. North America 16. Polar regions (Arctic and Antarctic) 17. Small island states Part IV. Global Issues and Synthesis: 18. Adaptation to climate change in the context of sustainable development and equity 19. Synthesis and integration of impacts, adaptation, and vulnerability Index.

12,541 citations

Book
01 Jan 2007
TL;DR: In this paper, the authors present a cross-chapter case study on climate change and sustainability in natural and managed systems and assess key vulnerabilities and the risk from climate change, and assess adaptation practices, options, constraints and capacity.
Abstract: Foreword Preface Introduction Summary for policymakers Technical summary 1. Assessment of observed changes and responses in natural and managed systems 2. New assessment methodologies and the characterisation of future conditions 3. Fresh water resources and their management 4. Ecosystems, their properties, goods and services 5. Food, fibre and forest products 6. Coastal systems and low-lying areas 7. Industry, settlement and society 8. Human health 9. Africa 10. Asia 11. Australia and New Zealand 12. Europe 13. Latin America 14. North America 15. Polar regions (Arctic and Antarctic) 16. Small islands 17. Assessment of adaptation practices, options, constraints and capacity 18. Inter-relationships between adaptation and mitigation 19. Assessing key vulnerabilities and the risk from climate change 20. Perspectives on climate change and sustainability - 811 Cross-chapter case studies Appendix I. Glossary Appendix II. Contributors to the IPCC WGII Fourth Assessment Report Appendix III. Reviewers of the IPCC WGII Fourth Assessment Report Appendix IV. Acronyms and abbreviations Appendix V. Index and database of regional content Index CD-ROM.

8,465 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations