scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrating pests and pathogens into the climate change/food security debate

01 Jul 2009-Journal of Experimental Botany (Oxford University Press)-Vol. 60, Iss: 10, pp 2827-2838
TL;DR: More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Abstract: While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Dans ce contexte, l’impact des changements climatiques anticipes sur les interactions entre le nematode a kyste du soya et son hote principal, le soya, sera presente.
Abstract: Au Canada, le nematode a kyste du soya, Heterodera glycines (NKS), a d’abord ete detecte en Ontario en 1988 et plus recemment au Quebec en 2013. Il est la principale cause des pertes economiques associees a la production de soya au Canada et aux Etats-Unis. Les moyens de lutte contre ce ravageur sont limites et reposent essentiellement sur l’exploitation des genes de resistance naturels du soya. II est primordial d’etudier la reponse du NKS ainsi que celle de son hote sous le climat du Quebec afin de developper des strategies de lutte efficaces. De plus, les fluctuations de temperature associees aux changements climatiques modifieront les traits biologiques du NKS, la phenologie de son hote et leur interaction. Cela pourrait ainsi affecter l’efficacite et la durabilite des outils de gestion. Dans ce contexte, l’impact des changements climatiques anticipes sur les interactions entre le nematode a kyste du soya et son hote principal, le soya, sera presente.

2 citations

Book ChapterDOI
01 Jan 2018
TL;DR: In this paper, a negative or positive effect on the short and long term on the diversity of pest abundance, pest's-host plant interactions, an abundance of natural enemies, and finally the extent of damage to the Egyptian economy due to the impact on agricultural economic crops.
Abstract: Climate change is expected to have a negative or positive effect on the short and long term on the diversity of pest’s abundance, pest’s–host plant interactions, an abundance of natural enemies, and finally the extent of damage to the Egyptian economy due to the impact on agricultural economic crops. Under current and previous climatic conditions, major crops and their pests have adapted to climatic elements that help them to survive, grow, reproduce, and spread, based on host abundance and interaction. The significant change in climate is reflected in the increase in the average temperature of the globe, the change in precipitation amounts, their patterns, and their locations. These seasonal and long-term changes will affect the crops grown regarding production and components, the emergence of new plant species that were not previously known. In other words, any change in the components of the environment will be reflected in human lifestyles and the pests associated with their crops. In studies under laboratory conditions, climate components directly affected insect dynamics by modifying growth, survival, fertility, dispersion, and differentiation.

2 citations

Dissertation
01 Mar 2014
TL;DR: It is concluded that plants respond in a species-specific manner to herbivory, which implies that the evolution of plant defences has varied among the three species resulting in no similarities in induced metabolites.
Abstract: Metabolic fingerprinting is a biochemical method that takes an untargeted approach to measure a large number of metabolites and gain a ‘snapshot’ of an organism’s metabolome at a specific time. This thesis explores how metabolic fingerprinting can be used to study plant-insect interactions using Pieris rapae and its larval host plant species as model systems, and investigates how biotic and abiotic factors shape plant and insect metabolomes. I found that different Brassicales host plant species, as well as P. rapae larvae feeding on these plant species, had different metabolic fingerprints. A group of very abundant metabolites in the host plant Cleome spinosa were present in larvae feeding from this plant species, documenting a new occurrence of metabolite transfer between plants and insect herbivores. There was some evidence that the metabolic fingerprints of plants predicted the performance of insects, implying that the presence or absence of specific metabolites in host plants may determine the success of herbivores. Changes in metabolites measured in three host plant species following herbivory by P. rapae showed that herbivory changed the metabolic fingerprints of plants but there was little overlap in metabolites that were induced. I conclude that plants respond in a species-specific manner to herbivory, which implies that the evolution of plant defences has varied among the three species resulting in no similarities in induced metabolites. The metabolic fingerprints of the host plant Brassica oleracea as well as P. rapae larvae were changed by elevated temperature and to a lesser extent by elevated carbon dioxide (CO2). The larvae developed more quickly under elevated temperature but larval performance was not affected by elevated CO2 despite the diet of B. oleracea leaves grown under elevated CO2 containing less nitrogen. These findings provide a unique metabolite perspective of insects and plants and were facilitated by the wide breadth of metabolites studied using metabolic fingerprinting.

2 citations


Cites background from "Integrating pests and pathogens int..."

  • ...First, if an insect’s host plant is a crop plant and the insect is a pest it may be a threat to our food security (Gregory et al. 2009)....

    [...]

  • ...Predicting how climate change will affect the interactions between plants and insects is especially important given the respective roles plants play as crops and insects as pests of these crops (Gregory et al. 2009)....

    [...]

Journal ArticleDOI
16 Sep 2019-Planta
TL;DR: It is demonstrated that cabbage and cauliflower, common Brassicaceae crops, also display leaf susceptibility and rosette core resistance to B. cinerea that can involve leaf abscission.
Abstract: Unlike rosette leaves, the mature Arabidopsis rosette core can display full resistance to Botrytis cinerea revealing the importance for spatial and developmental aspects of plant fungal resistance. Arabidopsis thaliana is a model host to investigate plant defense against fungi. However, many of the reports investigating Arabidopsis fungal defense against the necrotrophic fungus, Botrytis cinerea, utilize rosette leaves as host tissue. Here we report organ-dependent differences in B. cinerea resistance of Arabidopsis. Although wild-type Arabidopsis rosette leaves mount a jasmonate-dependent defense that slows fungal growth, this defense is incapable of resisting fungal devastation. In contrast, as the fungus spreads through infected leaf petioles towards the plant center, or rosette core, there is a jasmonate- and age-dependent fungal penetration blockage into the rosette core. We report evidence for induced and preformed resistance in the rosette core, as direct rosette core inoculation can also result in resistance, but at a lower penetrance relative to infections that approach the core from infected leaf petioles. The Arabidopsis rosette core displays a distinct transcriptome relative to other plant organs, and BLADE ON PETIOLE (BOP) transcripts are abundant in the rosette core. The BOP genes, with known roles in abscission zone formation, are required for full Arabidopsis rosette core B. cinerea resistance, suggesting a possible role for BOP-dependent modifications that may help to restrict fungal susceptibility of the rosette core. Finally, we demonstrate that cabbage and cauliflower, common Brassicaceae crops, also display leaf susceptibility and rosette core resistance to B. cinerea that can involve leaf abscission. Thus, spatial and developmental aspects of plant host resistance play critical roles in resistance to necrotrophic fungal pathogens and are important to our understanding of plant defense mechanisms.

2 citations

Book ChapterDOI
01 Jan 2014
TL;DR: There is a significant necessity for new agricultural strategies to prevent the potential hazards that may be the result of pathogens due to climatic change.
Abstract: Occurrence of a certain disease in a plant depends on a multitude of factors including a disease-causing virulent pathogen, a vulnerable host plant, and the environment. This forms a three key factor triangle for the development of diseases. Changing climate become a significant issue and may be intensely associated with increases in yield losses in the coming years. An increased level of ozone and carbon dioxide, altered precipitation patterns, flooding, drought, temperature extremes, global warming, and salinity are the outcomes of climatic changes. These all directly or indirectly affect the occurrence and severity of diseases in plants. Conditions more optimum to pathogenic spread, such as humidity and increased temperature, may lead to increases in the number of epidemics in plants in new geographical areas. Thus, there is a significant necessity for new agricultural strategies to prevent the potential hazards that may be the result of pathogens due to climatic change. This chapter reviews different research strategies in order to characterize the root cause of diseases in major crops worldwide.

2 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Book
01 Jul 2001
TL;DR: In this paper, the authors set the stage for impact, adaptation, and vulnerability assessment of climate change in the context of sustainable development and equity, and developed and applied scenarios in Climate Change Impact, Adaptation, and Vulnerability Assessment.
Abstract: Summary for policymakers Technical summary Part I. Setting the Stage for Impact, Adaptation, and Vulnerability Assessment: 1. Overview 2. Methods and tools 3. Development and application of scenarios in Climate Change Impact, Adaptation, and Vulnerability Assessment Part II. Sectors and Systems: Impacts, Adaptation, and Vulnerability: 4. Hydrology and water resources 5. Natural and managed ecosystems 6. Coastal zones and marine ecosystems 7. Energy, industry, and settlements 8. Financial services 9. Human health Part III. Regional Analyses: Impacts, Adaptation, and Vulnerability: 10. Africa 11. Asia 12. Australasia 13. Europe 14. Latin America 15. North America 16. Polar regions (Arctic and Antarctic) 17. Small island states Part IV. Global Issues and Synthesis: 18. Adaptation to climate change in the context of sustainable development and equity 19. Synthesis and integration of impacts, adaptation, and vulnerability Index.

12,541 citations

Book
01 Jan 2007
TL;DR: In this paper, the authors present a cross-chapter case study on climate change and sustainability in natural and managed systems and assess key vulnerabilities and the risk from climate change, and assess adaptation practices, options, constraints and capacity.
Abstract: Foreword Preface Introduction Summary for policymakers Technical summary 1. Assessment of observed changes and responses in natural and managed systems 2. New assessment methodologies and the characterisation of future conditions 3. Fresh water resources and their management 4. Ecosystems, their properties, goods and services 5. Food, fibre and forest products 6. Coastal systems and low-lying areas 7. Industry, settlement and society 8. Human health 9. Africa 10. Asia 11. Australia and New Zealand 12. Europe 13. Latin America 14. North America 15. Polar regions (Arctic and Antarctic) 16. Small islands 17. Assessment of adaptation practices, options, constraints and capacity 18. Inter-relationships between adaptation and mitigation 19. Assessing key vulnerabilities and the risk from climate change 20. Perspectives on climate change and sustainability - 811 Cross-chapter case studies Appendix I. Glossary Appendix II. Contributors to the IPCC WGII Fourth Assessment Report Appendix III. Reviewers of the IPCC WGII Fourth Assessment Report Appendix IV. Acronyms and abbreviations Appendix V. Index and database of regional content Index CD-ROM.

8,465 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations