scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrating pests and pathogens into the climate change/food security debate

01 Jul 2009-Journal of Experimental Botany (Oxford University Press)-Vol. 60, Iss: 10, pp 2827-2838
TL;DR: More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Abstract: While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
12 Apr 2012-Nature
TL;DR: It is argued that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.
Abstract: The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security. Human activity is intensifying fungal disease dispersal by modifying natural environments and thus creating new opportunities for evolution. We argue that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.

2,408 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive summary of studies that simulate climate change impacts on agriculture are reported in a meta-analysis, which suggests that aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.
Abstract: A comprehensive summary of studies that simulate climate change impacts on agriculture are now reported in a meta-analysis. Findings suggest that, without measures to adapt to changing conditions, aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.

1,458 citations

Journal ArticleDOI
TL;DR: This work proposes a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change.
Abstract: Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community Failure to incorporate these interactions limits the ability to predict responses of species to climate change We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change

1,169 citations

01 Jan 2014
TL;DR: The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future.
Abstract: Many definitions of food security exist, and these have been the subject of much debate. As early as 1992, Maxwell and Smith (1992) reviewed more than 180 items discussing concepts and definitions, and more definitions have been formulated since (DEFRA, 2006). Whereas many earlier definitions centered on food production, more recent definitions highlight access to food, in keeping with the 1996 World Food Summit definition (FAO, 1996) that food security is met when “all people, at all times, have physical and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life.” Worldwide attention on food access was given impetus by the food “price spike” in 2007–2008, triggered by a complex set of long- and short-term factors (FAO, 2009b; von Braun and Torero, 2009). FAO concluded, “provisional estimates show that, in 2007, 75 million more people were added to the total number of undernourished relative to 2003–05” (FAO, 2008); this is arguably a low-end estimate (Headey and Fan, 2010). More than enough food is currently produced per capita to feed the global population, yet about 870 million people remained hungry in the period from 2010 to 2012 (FAO et al., 2012). The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future (Figure 7-1).

960 citations


Cites background from "Integrating pests and pathogens int..."

  • ...The potential influence of pests and diseases is commonly beyond the scope of such studies (Gregory et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty.
Abstract: This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.

828 citations


Cites background from "Integrating pests and pathogens int..."

  • ...This may be through impacts of warming or drought on the resistance of crops to specific diseases and through the increased pathogenicity of organisms by mutation induced by environmental stress (Gregory et al. 2009)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper reviews and interprets relevant work on the biology and management of wireworms within the context of potato production in Europe, with particular reference to the U.K.
Abstract: Summary 1 This paper reviews and interprets relevant work on the biology and management of wireworms (Agriotes spp.) within the context of potato production in Europe, with particular reference to the U.K. Although the review concentrates on Agriotes spp., the extensive world literature on other Elateridae of economic importance is also drawn upon. 2 Possible reasons for the apparent increase in the importance of wireworms on the potato crop are discussed, followed by a review of wireworm biology, risk assessment techniques (soil sampling, bait trapping and adult pheromone trapping), crop damage, and cultural, biological and chemical control methods. 3 It is clear that the process of site risk assessment followed by appropriate control measures (usually insecticide use) will remain the mainstay of wireworm management programmes. However, there is considerable scope for adopting new risk assessment techniques, such as pheromone trapping of adult beetles. 4 These control measures will need to be underpinned by a greater understanding of wireworm biology, particularly adult dispersal. Factors affecting the initiation and maintenance of wireworm populations in individual fields also require further study. The current use of insecticides could also be optimized by a better appreciation of the interactions between insecticide use, potato variety choice and harvest dates.

203 citations


"Integrating pests and pathogens int..." refers background in this paper

  • ...Wireworms are damaging pests of crops such as potatoes, especially when planted on land taken out of grass (Johnson et al., 2008) and there is speculation that they are likely to become more of a problem as a result of climate change (Parker and Howard, 2001)....

    [...]

Book
28 Mar 1999
TL;DR: The most important component of global change over the next three or four decades will likely be land-use/cover change as discussed by the authors, driven largely by the need to feed the expanding human population, expected to increase by almost one billion (109) people per decade for the next 3 decades at least.
Abstract: From the perspective of terrestrial ecosystems, the most important component of global change over the next three or four decades will likely be land-use/cover change. It is driven largely by the need to feed the expanding human population, expected to increase by almost one billion (109) people per decade for the next three decades at least. Much of this increase will occur in developing countries in the low-latitude regions of the world. To meet the associated food demand, crop yields will need to increase, consistently, by over 2% every year through this period. Despite advances in technology, increasing food production must lead to intensification of agriculture in areas which are already cropped, and conversion of forests and grasslands into cropping systems. Much of the latter will occur in semi-arid regions and on lands which are marginally suitable for cultivation, increasing the risk of soil erosion, accelerated water use, and further land degradation.

198 citations

Journal ArticleDOI
TL;DR: There was strong discrimination between species with different life cycle strategies and between species feeding on herbs and trees, suggesting the possible value of trait-based groupings in predicting responses to environmental changes.
Abstract: Aphids, because of their short generation time and low developmental threshold temperatures, are an insect group expected to respond particularly strongly to environmental changes. Forty years of standardized, daily data on the abundance of flying aphids have been brought together from countries throughout Europe, through the EU Thematic Network 'EXAMINE'. Relationships between phenology, represented by date of first appearance in a year in a suction trap, of 29 aphid species and environmental data have been quantified using the residual maximum likelihood (REML) methodology. These relationships have been used with climate change scenario data to suggest plausible changes in aphid phenology. In general, the date of first record of aphid species in suction traps is expected to advance, the rate of advance varying with location and species, but averaging 8 days over the next 50 years. Strong relationships between aphid phenology and environmental variables have been found for many species, but they are notably weaker in species living all year on trees. Canonical variate analysis and principal coordinate analysis were used to determine ordinations of the 29 species on the basis of the presence/absence of explanatory variables in the REML models. There was strong discrimination between species with different life cycle strategies and between species feeding on herbs and trees, suggesting the possible value of trait-based groupings in predicting responses to environmental changes.

194 citations

Journal ArticleDOI
TL;DR: A weather-based disease forecasting model and climate change model combined to predict that epidemics will not only increase in severity but also spread northwards by the 2020s provide a stimulus to develop models to predict the effects of climate change on other plant diseases, especially in delicately balanced agricultural or natural ecosystems.
Abstract: Climate change affects plants in natural and agricultural ecosystems throughout the world but little work has been done on the effects of climate change on plant disease epidemics. To illustrate such effects, a weather-based disease forecasting model was combined with a climate change model predicting UK temperature and rainfall under high- and low-carbon emissions for the 2020s and 2050s. Multi-site data collected over a 15-year period were used to develop and validate a weather-based model forecasting severity of phoma stem canker epidemics on oilseed rape across the UK. This was combined with climate change scenarios to predict that epidemics will not only increase in severity but also spread northwards by the 2020s. These results provide a stimulus to develop models to predict the effects of climate change on other plant diseases, especially in delicately balanced agricultural or natural ecosystems. Such predictions can be used to guide policy and practice in adapting to effects of climate change on food security and wildlife.

192 citations


"Integrating pests and pathogens int..." refers background in this paper

  • ...The results clearly indicate not only increased severity across its existing range, but also rapid progress into more northern areas where the crop is largely disease-free at present (Evans et al., 2008)....

    [...]

01 Jan 2001
TL;DR: A case study of a land cover validation Geo-Wiki is described in this article, in which the tool is used to validate existing global land cover products and the potential of such a tool for other applications is also recognized.
Abstract: In recent years the ability to collect spatial information from volunteers has greatly expanded through the combination of Google Earth, geo-tagged photos and the Internet. A Geo-Wiki has been created to aid in both the validation of existing spatial information and the collection of new information through the powerful resource of crowdsourcing. A case study of a land cover validation Geo-Wiki is described, in which the tool is used to validate existing global land cover products. The potential of such a tool for other applications is also recognized.

188 citations