scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrating pests and pathogens into the climate change/food security debate

01 Jul 2009-Journal of Experimental Botany (Oxford University Press)-Vol. 60, Iss: 10, pp 2827-2838
TL;DR: More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.
Abstract: While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
12 Apr 2012-Nature
TL;DR: It is argued that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.
Abstract: The past two decades have seen an increasing number of virulent infectious diseases in natural populations and managed landscapes. In both animals and plants, an unprecedented number of fungal and fungal-like diseases have recently caused some of the most severe die-offs and extinctions ever witnessed in wild species, and are jeopardizing food security. Human activity is intensifying fungal disease dispersal by modifying natural environments and thus creating new opportunities for evolution. We argue that nascent fungal infections will cause increasing attrition of biodiversity, with wider implications for human and ecosystem health, unless steps are taken to tighten biosecurity worldwide.

2,408 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive summary of studies that simulate climate change impacts on agriculture are reported in a meta-analysis, which suggests that aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.
Abstract: A comprehensive summary of studies that simulate climate change impacts on agriculture are now reported in a meta-analysis. Findings suggest that, without measures to adapt to changing conditions, aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.

1,458 citations

Journal ArticleDOI
TL;DR: This work proposes a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change.
Abstract: Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community Failure to incorporate these interactions limits the ability to predict responses of species to climate change We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change

1,169 citations

01 Jan 2014
TL;DR: The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future.
Abstract: Many definitions of food security exist, and these have been the subject of much debate. As early as 1992, Maxwell and Smith (1992) reviewed more than 180 items discussing concepts and definitions, and more definitions have been formulated since (DEFRA, 2006). Whereas many earlier definitions centered on food production, more recent definitions highlight access to food, in keeping with the 1996 World Food Summit definition (FAO, 1996) that food security is met when “all people, at all times, have physical and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life.” Worldwide attention on food access was given impetus by the food “price spike” in 2007–2008, triggered by a complex set of long- and short-term factors (FAO, 2009b; von Braun and Torero, 2009). FAO concluded, “provisional estimates show that, in 2007, 75 million more people were added to the total number of undernourished relative to 2003–05” (FAO, 2008); this is arguably a low-end estimate (Headey and Fan, 2010). More than enough food is currently produced per capita to feed the global population, yet about 870 million people remained hungry in the period from 2010 to 2012 (FAO et al., 2012). The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future (Figure 7-1).

960 citations


Cites background from "Integrating pests and pathogens int..."

  • ...The potential influence of pests and diseases is commonly beyond the scope of such studies (Gregory et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty.
Abstract: This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.

828 citations


Cites background from "Integrating pests and pathogens int..."

  • ...This may be through impacts of warming or drought on the resistance of crops to specific diseases and through the increased pathogenicity of organisms by mutation induced by environmental stress (Gregory et al. 2009)....

    [...]

References
More filters
Journal ArticleDOI
22 Sep 2005-Nature
TL;DR: An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
Abstract: Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003.We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg Cyr21) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.

3,408 citations


"Integrating pests and pathogens int..." refers background in this paper

  • ...As a consequence, parts of the EU such as the Po valley in Italy, reported record reductions in maize yield of 36% (Ciais et al., 2005)....

    [...]

Journal ArticleDOI
TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Abstract: Contents Summary 1 I. What is FACE? 2 II. Materials and methods 2 III. Photosynthetic carbon uptake 3 IV. Acclimation of photosynthesis 6 V. Growth, above-ground production and yield 8 VI. So, what have we learned? 10 Acknowledgements 11 References 11 Appendix 1. References included in the database for meta-analyses 14 Appendix 2. Results of the meta-analysis of FACE effects 18 Summary Free-air CO2 enrichment (FACE) experiments allow study of the effects of elevated [CO2] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO2]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO2]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO2] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C4 species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO2]; but even with FACE there are limitations, which are also discussed.

3,140 citations

Journal ArticleDOI
TL;DR: Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.
Abstract: This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life-history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.

2,114 citations

Journal ArticleDOI
TL;DR: In this article, the impact of climate change on crop yields, production, and risk of hunger was analyzed for linked socio-economic and climate scenarios using transfer functions derived from crop model simulations with observed climate data and projected climate change scenarios.
Abstract: This paper analyses the global consequences to crop yields, production, and risk of hunger of linked socio-economic and climate scenarios. Potential impacts of climate change are estimated for climate change scenarios developed from the HadCM3 global climate model under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A1FI, A2, B1, and B2. Projected changes in yield are calculated using transfer functions derived from crop model simulations with observed climate data and projected climate change scenarios. The basic linked system (BLS) is used to evaluate consequent changes in global cereal production, cereal prices and the number of people at risk from hunger. The crop yield results elucidate the complex regional patterns of projected climate variables, CO 2 effects, and agricultural systems that contribute to aggregations of global crop production. The A1FI scenario, as expected with its large increase in global temperatures, exhibits the greatest decreases both regionally and globally in yields, especially by the 2080s. The contrast between the yield change in developed and developing countries is largest under the A2a–c scenarios. Under the B1 and B2 scenarios, developed and developing countries exhibit less contrast in crop yield changes, with the B2 future crop yield changes being slightly more favourable than those of the B1 scenario. When crop yield results are introduced to the BLS world food trade system model, the combined model and scenario experiments demonstrate that the world, for the most part, appears to be able to continue to feed itself under the SRES scenarios during the rest of this century. However, this outcome is achieved through production in the developed countries (which mostly benefit from climate change) compensating for declines projected, for the most part, for developing nations. While global production appears stable, regional differences in crop production are likely to grow stronger through time, leading to a significant polarisation of effects, with substantial increases in prices and risk of hunger amongst the poorer nations, especially under scenarios of greater inequality (A1FI and A2). The use of the SRES scenarios highlights several non-linearities in the world food supply system, both in the biophysical sense, where the levels of atmospheric CO 2 tested reach new levels, and the socio-economic sense, where changes in population dynamics and economic and political structures complicate the translation of biophysical climate change impacts into social indices, such as the number of people at risk of hunger.

1,667 citations

Journal ArticleDOI
TL;DR: Although trends agree with parallel summaries of enclosure studies, important quantitative differences emerge that have important implications both for predicting the future terrestrial biosphere and understanding how crops may need to be adapted to the changed and changing atmosphere.
Abstract: Atmospheric CO(2) concentration ([CO(2)]) is now higher than it was at any time in the past 26 million years and is expected to nearly double during this century. Terrestrial plants with the C(3) photosynthetic pathway respond in the short term to increased [CO(2)] via increased net photosynthesis and decreased transpiration. In the longer term this increase is often offset by downregulation of photosynthetic capacity. But much of what is currently known about plant responses to elevated [CO(2)] comes from enclosure studies, where the responses of plants may be modified by size constraints and the limited life-cycle stages that are examined. Free-Air CO(2) Enrichment (FACE) was developed as a means to grow plants in the field at controlled elevation of CO(2) under fully open-air field conditions. The findings of FACE experiments are quantitatively summarized via meta-analytic statistics and compared to findings from chamber studies. Although trends agree with parallel summaries of enclosure studies, important quantitative differences emerge that have important implications both for predicting the future terrestrial biosphere and understanding how crops may need to be adapted to the changed and changing atmosphere.

1,566 citations


"Integrating pests and pathogens int..." refers background in this paper

  • ...…research suggests that while many crops may respond positively to increased atmospheric CO2 concentrations in the absence of climate changes (Long et al., 2004), the associated effects of higher temperatures and altered patterns of precipitation will probably combine to reduce yields…...

    [...]

  • ...The moderate climatic shock intensified food insecurity and the long-term vulnerability of the region....

    [...]