scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Integrative annotation of chromatin elements from ENCODE data

TL;DR: These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types.
Abstract: The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
18 Dec 2014-Cell
TL;DR: In situ Hi-C is used to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types, identifying ∼10,000 loops that frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species.

5,945 citations


Cites background from "Integrative annotation of chromatin..."

  • ...…spurious contacts due to random ligation in dilute solution—as evidenced by a lower frequency of junctions between mitochondrial and nuclear DNA in the captured fragments and by the higher frequency of random ligations observed when the supernatant is sequenced (Extended Experimental Procedures…...

    [...]

  • ...First, our peaks frequently have a known promoter at one peak locus (as annotated by ENCODE’s ChromHMM) (Hoffman et al., 2013) and a known enhancer at the other (Figure 5A)....

    [...]

Journal ArticleDOI
TL;DR: The feasibility of analyzing an individual's epigenome on a timescale compatible with clinical decision-making is demonstrated and classes of DNA-binding factors that strictly avoided, could tolerate or tended to overlap with nucleosomes are discovered.
Abstract: We describe an assay for transposase-accessible chromatin using sequencing (ATAC-seq), based on direct in vitro transposition of sequencing adaptors into native chromatin, as a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq captures open chromatin sites using a simple two-step protocol with 500-50,000 cells and reveals the interplay between genomic locations of open chromatin, DNA-binding proteins, individual nucleosomes and chromatin compaction at nucleotide resolution. We discovered classes of DNA-binding factors that strictly avoided, could tolerate or tended to overlap with nucleosomes. Using ATAC-seq maps of human CD4(+) T cells from a proband obtained on consecutive days, we demonstrated the feasibility of analyzing an individual's epigenome on a timescale compatible with clinical decision-making.

4,984 citations

Journal ArticleDOI
Sarah Djebali, Carrie A. Davis1, Angelika Merkel, Alexander Dobin1, Timo Lassmann, Ali Mortazavi2, Ali Mortazavi3, Andrea Tanzer, Julien Lagarde, Wei Lin1, Felix Schlesinger1, Chenghai Xue1, Georgi K. Marinov3, Jainab Khatun4, Brian A. Williams3, Chris Zaleski1, Joel Rozowsky5, Marion S. Röder, Felix Kokocinski6, Rehab F. Abdelhamid, Tyler Alioto, Igor Antoshechkin3, Michael T. Baer1, Nadav Bar7, Philippe Batut1, Kimberly Bell1, Ian Bell8, Sudipto K. Chakrabortty1, Xian Chen9, Jacqueline Chrast10, Joao Curado, Thomas Derrien, Jorg Drenkow1, Erica Dumais8, Jacqueline Dumais8, Radha Duttagupta8, Emilie Falconnet11, Meagan Fastuca1, Kata Fejes-Toth1, Pedro G. Ferreira, Sylvain Foissac8, Melissa J. Fullwood12, Hui Gao8, David Gonzalez, Assaf Gordon1, Harsha P. Gunawardena9, Cédric Howald10, Sonali Jha1, Rory Johnson, Philipp Kapranov8, Brandon King3, Colin Kingswood, Oscar Junhong Luo12, Eddie Park2, Kimberly Persaud1, Jonathan B. Preall1, Paolo Ribeca, Brian A. Risk4, Daniel Robyr11, Michael Sammeth, Lorian Schaffer3, Lei-Hoon See1, Atif Shahab12, Jørgen Skancke7, Ana Maria Suzuki, Hazuki Takahashi, Hagen Tilgner13, Diane Trout3, Nathalie Walters10, Huaien Wang1, John A. Wrobel4, Yanbao Yu9, Xiaoan Ruan12, Yoshihide Hayashizaki, Jennifer Harrow6, Mark Gerstein5, Tim Hubbard6, Alexandre Reymond10, Stylianos E. Antonarakis11, Gregory J. Hannon1, Morgan C. Giddings4, Morgan C. Giddings9, Yijun Ruan12, Barbara J. Wold3, Piero Carninci, Roderic Guigó14, Thomas R. Gingeras1, Thomas R. Gingeras8 
06 Sep 2012-Nature
TL;DR: Evidence that three-quarters of the human genome is capable of being transcribed is reported, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs that prompt a redefinition of the concept of a gene.
Abstract: Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

4,450 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations


Cites methods from "Integrative annotation of chromatin..."

  • ...Additionally curators use promoter-associated histone modification marks such as H3K4me3 from the NIH Roadmap Epigenomic Mapping Consortium (REMC; (17) and the ENCODE (Encyclopedia of DNA Elements) project (18) to verify the presence of an active promoter....

    [...]

Journal ArticleDOI
TL;DR: A new method is introduced, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers, which is computationally tractable at very large sample sizes and leverages genome-wide information.
Abstract: Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers and many cell type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior.

1,939 citations


Cites background from "Integrative annotation of chromatin..."

  • ...The 24 main annotations include: coding, UTR, promoter, and intron [14, 17]; histone marks H3K4me1, H3K4me3, H3K9ac [3–5] and two versions of H3K27ac [18, 19]; open chromatin reflected by DNase I hypersensitivity Site (DHS) regions [5, 14]; combined chromHMM/Segway predictions [20], which make use of many ENCODE annotations to produce a single partition of the genome into seven underlying “chromatin states”; regions that are conserved in mammals [21, 22]; superenhancers, which are large clusters of highly active enhancers [19]; and enhancers with balanced bidirectional capped transcripts identified using cap analysis of gene expression in the FANTOM5 panel of samples, which we call FANTOM5 enhancers [23]....

    [...]

References
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Abstract: We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.

13,008 citations


"Integrative annotation of chromatin..." refers background in this paper

  • ...Supplementary Data are available at NAR Online: Supplementary Tables 1–7, Supplementary Figures 1–23, Supplementary Methods, Supplementary Results and Supplementary References [44–62]....

    [...]

Journal Article
01 Jan 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

8,106 citations

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations

Related Papers (5)
19 Feb 2015-Nature
Anshul Kundaje, Wouter Meuleman, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Angela Yen, Alireza Heravi-Moussavi, Pouya Kheradpour, Pouya Kheradpour, Zhizhuo Zhang, Zhizhuo Zhang, Jianrong Wang, Jianrong Wang, Michael J. Ziller, Viren Amin, John W. Whitaker, Matthew D. Schultz, Lucas D. Ward, Lucas D. Ward, Abhishek Sarkar, Abhishek Sarkar, Gerald Quon, Gerald Quon, Richard Sandstrom, Matthew L. Eaton, Matthew L. Eaton, Yi-Chieh Wu, Yi-Chieh Wu, Andreas R. Pfenning, Andreas R. Pfenning, Xinchen Wang, Xinchen Wang, Melina Claussnitzer, Melina Claussnitzer, Yaping Liu, Yaping Liu, Cristian Coarfa, R. Alan Harris, Noam Shoresh, Charles B. Epstein, Elizabeta Gjoneska, Elizabeta Gjoneska, Danny Leung, Wei Xie, R. David Hawkins, Ryan Lister, Chibo Hong, Philippe Gascard, Andrew J. Mungall, Richard A. Moore, Eric Chuah, Angela Tam, Theresa K. Canfield, R. Scott Hansen, Rajinder Kaul, Peter J. Sabo, Mukul S. Bansal, Mukul S. Bansal, Mukul S. Bansal, Annaick Carles, Jesse R. Dixon, Kai How Farh, Soheil Feizi, Soheil Feizi, Rosa Karlic, Ah Ram Kim, Ah Ram Kim, Ashwinikumar Kulkarni, Daofeng Li, Rebecca F. Lowdon, Ginell Elliott, Tim R. Mercer, Shane Neph, Vitor Onuchic, Paz Polak, Paz Polak, Nisha Rajagopal, Pradipta R. Ray, Richard C Sallari, Richard C Sallari, Kyle Siebenthall, Nicholas A Sinnott-Armstrong, Nicholas A Sinnott-Armstrong, Michael Stevens, Robert E. Thurman, Jie Wu, Bo Zhang, Xin Zhou, Arthur E. Beaudet, Laurie A. Boyer, Philip L. De Jager, Philip L. De Jager, Peggy J. Farnham, Susan J. Fisher, David Haussler, Steven J.M. Jones, Steven J.M. Jones, Wei Li, Marco A. Marra, Michael T. McManus, Shamil R. Sunyaev, Shamil R. Sunyaev, James A. Thomson, Thea D. Tlsty, Li-Huei Tsai, Li-Huei Tsai, Wei Wang, Robert A. Waterland, Michael Q. Zhang, Lisa Helbling Chadwick, Bradley E. Bernstein, Bradley E. Bernstein, Bradley E. Bernstein, Joseph F. Costello, Joseph R. Ecker, Martin Hirst, Alexander Meissner, Aleksandar Milosavljevic, Bing Ren, John A. Stamatoyannopoulos, Ting Wang, Manolis Kellis, Manolis Kellis