scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.

22 Mar 1996-Cell (Cell)-Vol. 84, Iss: 6, pp 889-897
TL;DR: The results suggest that the interactions of 14-3-3 with signaling proteins are critical for the activation of signaling proteins and suggest novel roles for serine/threonine phosphorylation in the assembly of protein-protein complexes.
About: This article is published in Cell.The article was published on 1996-03-22 and is currently open access. It has received 1372 citations till now. The article focuses on the topics: GTPase-activating protein & Signal transducing adaptor protein.
Citations
More filters
Journal ArticleDOI
TL;DR: The mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI 3K/ c-AKT pathway promotes cell survival, and the current spectrum of c- akt targets and their roles in mediating c- Akt-dependent cell survival are reviewed.
Abstract: The programmed cell death that occurs as part of normal mammalian development was first observed nearly a century ago (Collin 1906). It has since been established that approximately half of all neurons in the neuroaxis and >99.9% of the total number of cells generated during the course of a human lifetime go on to die through a process of apoptosis (for review, see Datta and Greenberg 1998; Vaux and Korsmeyer 1999). The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. The purification in the 1950s of the nerve growth factor (NGF), which promotes the survival of sympathetic neurons, set the stage for the discovery that peptide trophic factors promote the survival of a wide variety of cell types in vitro and in vivo (Levi-Montalcini 1987). The profound biological consequences of growth factor (GF) suppression of apoptosis are exemplified by the critical role of target-derived neurotrophins in the survival of neurons and the maintenance of functional neuronal circuits. (Pettmann and Henderson 1998). Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 38-OH kinase (PI3K)/c-Akt kinase cascade. Several targets of the PI3K/c-Akt signaling pathway have been recently identified that may underlie the ability of this regulatory cascade to promote survival. These substrates include two components of the intrinsic cell death machinery, BAD and caspase 9, transcription factors of the forkhead family, and a kinase, IKK, that regulates the NF-kB transcription factor. This article reviews the mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI3K/c-Akt pathway promotes cell survival, and the current spectrum of c-Akt targets and their roles in mediating c-Akt-dependent cell survival.

4,260 citations


Cites background from "Interaction of 14-3-3 with signalin..."

  • ...Phosphorylation of either of these sites causes Bad to dissociate from Bcl-XL and to associate instead with cytoplasmic 14-3-3 proteins, adapter proteins that interact with a variety of signaling molecules in a phosphorylation-dependent manner (Muslin et al. 1996; Yaffe et al. 1997)....

    [...]

Journal ArticleDOI
TL;DR: Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted and particular emphasis is on ERK1/2.
Abstract: Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.

4,040 citations

Journal ArticleDOI
15 Nov 1996-Cell
TL;DR: The rapid phosphorylation of BAD following IL-3 connects a proximal survival signal with the BCL-2 family, modulating this checkpoint for apoptosis and enhanced BAD's death-promoting activity.

2,731 citations


Cites background from "Interaction of 14-3-3 with signalin..."

  • ...A wide array of functional roles kawa et al., 1993) and cyclic AMP-dependent protein kinase (PKA) for RAF1 (Muslin et al., 1996)....

    [...]

  • ...Both motifs have been found at the 14-3-3Since RAF1 activity was not apparently modulated by binding sites in other proteins (Muslin et al., 1996)....

    [...]

  • ...12 Bcl-xL clones stably expressing comparable lev- (Figure 8A) (Muslin et al., 1996)....

    [...]

  • ...Recently, 14-3-3 has been demonstrated to be a specific phosphoserinebinding protein (Muslin et al., 1996)....

    [...]

Journal ArticleDOI
TL;DR: All known MAPK module kinases from yeast to humans are defined, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology are defined.
Abstract: Widmann, Christian, Spencer Gibson, Matthew B. Jarpe, and Gary L. Johnson. Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human. Physiol. Rev. 79: 143–180, 19...

2,669 citations

Journal ArticleDOI
TL;DR: In this review, functions of small G proteins and their modes of activation and action are described.
Abstract: Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.

2,520 citations

References
More filters
Journal ArticleDOI
16 Feb 1995-Nature
TL;DR: This work highlights conserved protein domains that act as key regulatory participants in many of these different signalling pathways in multicellular organisms.
Abstract: Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.

2,433 citations

Journal ArticleDOI
28 Oct 1993-Nature
TL;DR: It is proposed that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB, which is activated as a result of phosphorylation by protein kinase A7.
Abstract: Cyclic AMP-regulated gene expression frequently involves a DNA element known as the cAMP-regulated enhancer (CRE). Many transcription factors bind to this element, including the protein CREB, which is activated as a result of phosphorylation by protein kinase A. This modification stimulates interaction with one or more of the general transcription factors or, alternatively, allows recruitment of a co-activator. Here we report that CREB phosphorylated by protein kinase A binds specifically to a nuclear protein of M(r) 265K which we term CBP (for CREB-binding protein). Fusion of a heterologous DNA-binding domain to the amino terminus of CBP enables the chimaeric protein to function as a protein kinase A-regulated transcriptional activator. We propose that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB.

2,041 citations

Journal ArticleDOI
TL;DR: The introduction of the glycine kinker into fusion proteins allows for the cleavage of the fusion proteins while they are attached to the affinity resin resulting in a single step purification of the recombinant protein.

1,761 citations


"Interaction of 14-3-3 with signalin..." refers methods in this paper

  • ...An interaction of arginine- and were subcloned into the vector pGEX-KT and purified as describedphosphoserine-containing peptides with the inner sur(Guan and Dixon1991)....

    [...]

Journal ArticleDOI
15 Jul 1993-Nature
TL;DR: The observation that Raf-1 and PKCα cooperate in the transformation of NIH3T3 cells is consistent with such a direct interaction, and the Ser499 phosphorylation site is necessary for this synergism.
Abstract: The kinase Raf-1 can be activated by treatment of cells with mitogens and by the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA) (reviewed in refs 1,2). Activated Raf-1 triggers a protein kinase cascade by direct phosphorylation of MAP kinase kinase, resulting in phosphorylation of ternary complex factor and Jun by MAP kinase. Here we investigate the molecular mechanism and biological consequences of PKC alpha-mediated Raf-1 activation in NIH3T3 fibroblasts. PKC alpha directly phosphorylates and activates Raf-1 both in vitro and in vivo. PKC alpha induces Raf-1 phosphorylation at several sites, including a serine residue at position 499. Mutation of serine at this position or at residue 259 does not abrogate Raf-1 stimulation by a combination of Ras plus the src tyrosine kinase Lck, but severely impedes Raf-1 activation by PKC alpha. Consistent with such a direct interaction is the observation that Raf-1 and PKC alpha cooperate in the transformation of NIH3T3 cells. The Ser499 phosphorylation site is necessary for this synergism.

1,245 citations

Journal Article
TL;DR: The development and application of a biosensor-based technology that employs surface plasmon resonance for label-free studies of molecular interactions in real time and the ability to monitor multi-molecular complexes as they form are reported on.
Abstract: We report here the development and application of a biosensor-based technology that employs surface plasmon resonance for label-free studies of molecular interactions in real time. The sensor chip interface, comprising a thin layer of gold deposited on a glass support, is derivatized with a flexible hydrophilic polymer to facilitate the attachment of specific ligands to the surface and to increase the dynamic range for surface concentration measurements. The sensor can be used to measure surface concentrations down to 10 pg/mm2. Typical coefficients of variation are from two to five percent. We anticipate that the ability to monitor multi-molecular complexes as they form will greatly contribute to the understanding of biorecognition and the structural basis of molecular function.

1,012 citations