scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interaction of silver nanoparticles with HIV-1

TL;DR: It is demonstrated that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus.
Abstract: The interaction of nanoparticles with biomolecules and microorganisms is an expanding field of research. Within this field, an area that has been largely unexplored is the interaction of metal nanoparticles with viruses. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus. The regular spatial arrangement of the attached nanoparticles, the center-to-center distance between nanoparticles, and the fact that the exposed sulfur-bearing residues of the glycoprotein knobs would be attractive sites for nanoparticle interaction suggest that silver nanoparticles interact with the HIV-1 virus via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Abstract: In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag+ (in the form of AgNO3). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.

3,697 citations


Cites background from "Interaction of silver nanoparticles..."

  • ...The size-dependent antimicrobial activity of silver nanoparticles has already been investigated ( 9 , 25), while to our knowledge the effect of shape on the antibacterial activity of silver nanoparticles has not been reported previously....

    [...]

  • ...Elechiguerra and coworkers ( 9 ) found that silver nanoparticles undergo a size-dependent interaction with human immunodeficiency virus type 1, preferably via binding to gp120 glycoprotein knobs....

    [...]

Posted Content
TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
Abstract: This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac death. We show that possible adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, and agglomeration state. The faster we will understand their causes and mechanisms, the more likely we are to find cures for diseases associated with nanoparticle exposure. We foresee a future with better-informed, and hopefully more cautious manipulation of engineered nanomaterials, as well as the development of laws and policies for safely managing all aspects of nanomaterial manufacturing, industrial and commercial use, and recycling.

2,652 citations

Journal ArticleDOI
TL;DR: This review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body has adapted to defend itself against nanoparticulate intruders, while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them.
Abstract: This review is presented as a common foundation for scientists interested in nanoparticles, their origin, activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of “nano,” while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. The reticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body, including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased anthropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles-“nanoparticles”-and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms, “nanotechnology,” is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors. A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of “bulk” materials may not suffice in reliably predicting toxic forms of nanoparticles, ongoing and expanded study of “nanotoxicity” will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson’s and Alzheimer’s. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification. While nanotoxicity is a relatively new concept to science, this review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.

2,598 citations


Cites background from "Interaction of silver nanoparticles..."

  • ... fullerene [61]. It has been demonstrated that silver nanoparticles undergo a size dependent interaction with HIV-1 virus, with nanoparticles exclusively in the range of 1Ð10 nm attached to the virus [294]. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro. 5. Physico-chemical characteristics dependent toxicity From previous knowledge o...

    [...]

Journal ArticleDOI
TL;DR: A review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms, is presented in this paper, where the authors suggest that further research is warranted given the already widespread and rapidly growing use of silver nanoparticles.
Abstract: Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver–dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.

2,467 citations


Cites background from "Interaction of silver nanoparticles..."

  • ...Additionally, PVP-coated silver nanoparticles in the range 1–10 nm attach to HIV-1 virus, inhibiting the virus from attaching to host cells (Elechiguerra et al. 2005)....

    [...]

  • ...(Elechiguerra et al. 2005; Lu et al. 2008; Sun et al. 2008; Zodrow et al. 2009)....

    [...]

Journal ArticleDOI
TL;DR: The antimicrobial mechanisms of several nanoparticles are reviewed, their merits, limitations and applicability for water disinfection and biofouling control are discussed, and research needs to utilize novel nanomaterials for water treatment applications are highlighted.

2,108 citations


Cites background from "Interaction of silver nanoparticles..."

  • ...Silver nanoparticles ranging from 1 to 10 nm inhibit certain viruses from binding to host cells by preferentially binding to the virus’ gp120 glycoproteins (Elichiguerra et al., 2005)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations


"Interaction of silver nanoparticles..." refers background in this paper

  • ...It has been demonstrated that, in the case of noble-metal nanocrystals, the electromagnetic, optical and catalytic properties are highly influenced by shape and size [5-7]....

    [...]

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations


"Interaction of silver nanoparticles..." refers background in this paper

  • ...In addition, the strong toxicity that silver exhibits in various chemical forms to a wide range of microorganisms is very well known [16-18], and silver nanoparticles have recently been shown to be a promising antimicrobial material[ 19 ]....

    [...]

Journal ArticleDOI
10 May 1996-Science
TL;DR: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy that is a putative G protein-coupled receptor with seven transmembrane segments.
Abstract: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated “fusin,” is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.

4,231 citations

Journal Article
TL;DR: Fusin this article is a putative G protein-coupled receptor with seven transmembrane segments, which enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and infection.
Abstract: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated "fusin," is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.

4,010 citations

Journal ArticleDOI
20 Jun 1996-Nature
TL;DR: The principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR-5, a receptor for the β-chemokines RANTES, Mip-1α and MIP-1β.
Abstract: Entry of HIV-1 into target cells requires cell-surface CD4 and additional host cell cofactors. A cofactor required for infection with virus adapted for growth in transformed T-cell lines was recently identified and named fusin. However, fusin does not promote entry of macrophage-tropic viruses, which are believed to be the key pathogenic strains in vivo. The principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR-5, a receptor for the β-chemokines RANTES, MIP-1α and MIP-1β.

3,802 citations


"Interaction of silver nanoparticles..." refers methods in this paper

  • ...The cytopathic effects of CD4+ MT-2 infection were analysed by optical microscopy assessment of syncytium formation as described elsewhere[39,40], as well as by the HIV-1 infection of cMAGI cells using the Blue Cell Assay[41,42]....

    [...]