scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interactions between the microbiota and the immune system.

08 Jun 2012-Science (American Association for the Advancement of Science)-Vol. 336, Iss: 6086, pp 1268-1273
TL;DR: Advances in understanding of the interactions between resident microbes and the immune system are reviewed and the implications for human health are reviewed.
Abstract: The large numbers of microorganisms that inhabit mammalian body surfaces have a highly coevolved relationship with the immune system. Although many of these microbes carry out functions that are critical for host physiology, they nevertheless pose the threat of breach with ensuing pathologies. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, thus ensuring that the mutualistic nature of the host-microbial relationship is maintained. At the same time, resident bacteria profoundly shape mammalian immunity. Here, we review advances in our understanding of the interactions between resident microbes and the immune system and the implications of these findings for human health.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The meta-analyses indicate protection against child infections and malocclusion, increases in intelligence, and probable reductions in overweight and diabetes, and an increase in tooth decay with longer periods of breastfeeding.

4,291 citations

Journal ArticleDOI
02 Aug 2013-Science
TL;DR: This study determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice, revealing that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
Abstract: Regulatory T cells (T regs ) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate T reg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic T regs . We determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic T reg pool and protect against colitis in a Ffar2 -dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.

3,733 citations


Cites background from "Interactions between the microbiota..."

  • ...Disruption of this homeostasis leads to intestinal inflammation and disease (2, 3)....

    [...]

Journal ArticleDOI
08 Jun 2012-Science
TL;DR: A deeper understanding of the axes that physiologically connect the gut, liver, muscle, and brain are a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.
Abstract: The composition and activity of the gut microbiota codevelop with the host from birth and is subject to a complex interplay that depends on the host genome, nutrition, and life-style. The gut microbiota is involved in the regulation of multiple host metabolic pathways, giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, muscle, and brain. A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.

3,509 citations

Journal ArticleDOI
TL;DR: By parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Abstract: The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.

2,920 citations

Journal ArticleDOI
TL;DR: The gut microbiota has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism.
Abstract: Establishing and maintaining beneficial interactions between the host and its associated microbiota are key requirements for host health. Although the gut microbiota has previously been studied in the context of inflammatory diseases, it has recently become clear that this microbial community has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism. The underlying molecular mechanisms of host-microorganism interactions remain largely unknown, but recent studies have begun to identify the key signalling pathways of the cross-species homeostatic regulation between the gut microbiota and its host.

2,585 citations

References
More filters
Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is suggested that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn’s disease that can now be further investigated.
Abstract: Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology A susceptibility locus for Crohn's disease has been mapped to chromosome 16 Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated

5,388 citations

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is shown that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease, and a link between an innate immune response to bacterial components and development of disease is suggested.
Abstract: Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohn's disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease. Wild-type NOD2 activates nuclear factor NF-kappaB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohn's disease, and suggest a link between an innate immune response to bacterial components and development of disease.

4,838 citations

Journal ArticleDOI
22 Oct 1993-Cell
TL;DR: The results indicate that the bowel inflammation in the mutants originates from uncontrolled immune responses stimulated by enteric antigens and that IL-10 is an essential immunoregulator in the intestinal tract.

4,196 citations

Journal ArticleDOI
30 Oct 2009-Cell
TL;DR: The authors showed that colonisation of mice with a segmented filamentous bacterium (SFB) is sufficient to induce the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria.

3,860 citations

Journal ArticleDOI
08 Jun 2012-Science
TL;DR: A deeper understanding of the axes that physiologically connect the gut, liver, muscle, and brain are a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.
Abstract: The composition and activity of the gut microbiota codevelop with the host from birth and is subject to a complex interplay that depends on the host genome, nutrition, and life-style. The gut microbiota is involved in the regulation of multiple host metabolic pathways, giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, muscle, and brain. A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.

3,509 citations

Related Papers (5)