scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interconnect-free parallel logic circuits in a single mechanical resonator

15 Feb 2011-Nature Communications (Nature Publishing Group)-Vol. 2, Iss: 1, pp 198-198
TL;DR: Here, it is demonstrated a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies.
Abstract: In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that phonons can be coherently transferred between two nanomechanical resonators, and the technique of controlling the coupling between nanoscale oscillators using a piezoelectric transducer is useful for manipulating classical oscillations, but if extended to the quantum regime it could also enable entanglement of macroscopic mechanical objects.
Abstract: It is now shown that phonons can be coherently transferred between two nanomechanical resonators, it is now shown. The technique of controlling the coupling between nanoscale oscillators using a piezoelectric transducer is useful for manipulating classical oscillations, but if extended to the quantum regime it could also enable entanglement of macroscopic mechanical objects.

321 citations

Journal ArticleDOI
TL;DR: This work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.
Abstract: We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization— given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.

256 citations

Journal ArticleDOI
TL;DR: This work proposes and demonstrates an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force and realizes the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain.
Abstract: Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

165 citations

Journal ArticleDOI
TL;DR: This work presents a realization of a transistor-like device, controlled by magnetic coupling, which can gate, switch, and cascade phonons without resorting to frequency conversion, operating at a single frequency.
Abstract: The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations.

155 citations


Cites background from "Interconnect-free parallel logic ci..."

  • ...Electromechanical logic (27) and transistors (28) operating using multiple frequencies have also been demonstrated....

    [...]

Journal ArticleDOI
TL;DR: An AlN/3C-SiC composite layer enables the third-order quasi-symmetric (QS(3)) Lamb wave mode with a high quality factor (Q) characteristic and an ultra-high phase velocity up to 32395 ms(-1).
Abstract: An AlN/3C-SiC composite layer enables the third-order quasi-symmetric (QS(3)) Lamb wave mode with a high quality factor (Q) characteristic and an ultra-high phase velocity up to 32395 ms(-1). A Lamb wave resonator utilizing the QS(3) mode exhibits a low motional impedance of 91 Ω and a high Q of 5510 at a series resonance frequency (f(s)) of 2.92 GHz, resulting in the highest f(s)·Q product of 1.61 × 10(13) Hz among the suspended piezoelectric thin film resonators reported to date.

155 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the induced nonlinear electric dipole and higher moments in an atomic system, irradiated simultaneously by two or three light waves, are calculated by quantum-mechanical perturbation theory.
Abstract: The induced nonlinear electric dipole and higher moments in an atomic system, irradiated simultaneously by two or three light waves, are calculated by quantum-mechanical perturbation theory. Terms quadratic and cubic in the field amplitudes are included. An important permutation symmetry relation for the nonlinear polarizability is derived and its frequency dependence is discussed. The nonlinear microscopic properties are related to an effective macroscopic nonlinear polarization, which may be incorporated into Maxwell's equations for an infinite, homogeneous, anisotropic, nonlinear, dielectric medium. Energy and power relationships are derived for the nonlinear dielectric which correspond to the Manley-Rowe relations in the theory of parametric amplifiers. Explicit solutions are obtained for the coupled amplitude equations, which describe the interaction between a plane light wave and its second harmonic or the interaction between three plane electromagnetic waves, which satisfy the energy relationship ${\ensuremath{\omega}}_{3}={\ensuremath{\omega}}_{1}+{\ensuremath{\omega}}_{2}$, and the approximate momentum relationship ${\mathrm{k}}_{3}={\mathrm{k}}_{1}+{\mathrm{k}}_{2}+\ensuremath{\Delta}\mathrm{k}$. Third-harmonic generation and interaction between more waves is mentioned. Applications of the theory to the dc and microwave Kerr effect, light modulation, harmonic generation, and parametric conversion are discussed.

3,511 citations

Book
01 Sep 1997
TL;DR: Fuzzy Databases: Principles and Applications is comprehensive covering all of the major approaches and models of fuzzy databases that have been developed including coverage of commercial/industrial systems and applications.
Abstract: From the Publisher: This volume presents the results of approximately 15 years of work from researchers around the world on the use of fuzzy set theory to represent imprecision in databases. The maturity of the research in the discipline and the recent developments in commercial/industrial fuzzy databases provided an opportunity to produce this survey. Fuzzy Databases: Principles and Applications is self-contained providing background material on fuzzy sets and database theory. It is comprehensive covering all of the major approaches and models of fuzzy databases that have been developed including coverage of commercial/industrial systems and applications. Background and introductory material are provided in the first two chapters. The major approaches in fuzzy databases comprise the second part of the volume. This includes the use of similarity and proximity measures as the fuzzy techniques used to extend the relational data modeling and the use of possibility theory approaches in the relational model. Coverage includes extensions to the data model, querying approaches, functional dependencies and other topics including implementation issues, information measures, database security, alternative fuzzy data models, the IFO model, and the network data models. A number of object-oriented extensions are also discussed. The use of fuzzy data modeling in geographical information systems (GIS) and use of rough sets in rough and fuzzy rough relational data models are presented. Major emphasis has been given to applications and commercialization of fuzzy databases. Several specific industrial/commercial products and applications are described. These include approaches to developing fuzzy front-end systems and special-purpose systems incorporating fuzziness.

3,239 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: This work shows that conventional cryogenic refrigeration can be used to cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator.
Abstract: Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system. The bizarre, often counter-intuitive predictions of quantum mechanics have been observed in atomic-scale optical and electrical systems, but efforts to demonstrate that quantum mechanics applies equally to a mechanical system, especially one large enough to be seen with the naked eye, have proved challenging. The difficulty is cooling a mechanical system to its quantum ground state, where all classical noise is eliminated. A team at the Department of Physics at the University of California, Santa Barbara, has overcome this obstacle. Using conventional cryogenic refrigeration, they cool a mechanical resonator with a very high oscillation frequency to one-fortieth of a degree above absolute zero. This resonator, called a 'quantum drum', is coupled to a superconducting quantum bit that acts as a quantum thermometer to detect whether there are any excitations left in the resonator. When it is confirmed there are none, it is further shown that a single quantum of excitation, a phonon, can be introduced in this system and exchanged between resonator and qubit many times, thereby taking the first steps towards complete quantum control of a mechanical system. Quantum mechanics provides an accurate description of a wide variety of physical systems but it is very challenging to prove that it also applies to macroscopic (classical) mechanical systems. This is because it has been impossible to cool a mechanical mode to its quantum ground state, in which all classical noise is eliminated. Recently, various mechanical devices have been cooled to a near-ground state, but this paper demonstrates the milestone result of a piezoelectric resonator with a mechanical mode cooled to its quantum ground state.

1,800 citations

Journal ArticleDOI
TL;DR: Recent progress in multiwavelength networks are reviewed, some of the limitations which affect the performance of such networks are discussed, and examples of several network and switch proposals based on these ideas are presented.
Abstract: The very broad bandwidth of low-loss optical transmission in a single-mode fiber and the recent improvements in single-frequency tunable lasers have stimulated significant advances in dense wavelength division multiplexed optical networks This technology, including wavelength-sensitive optical switching and routing elements and passive optical elements, has made it possible to consider the use of wavelength as another dimension, in addition to time and space, in network and switch design The independence of optical signals at different wavelengths makes this a natural choice for multiple-access networks, for applications which benefit from shared transmission media, and for networks in which very large throughputs are required Recent progress in multiwavelength networks are reviewed, some of the limitations which affect the performance of such networks are discussed, and examples of several network and switch proposals based on these ideas are presented Discussed also are critical technologies that are essential to progress in this field >

1,382 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent WDM networks, and discuss their potential advantages over the optoelectronic counterpart.
Abstract: WDM networks make a very effective utilization of the fiber bandwidth and offer flexible interconnections based on wavelength routing. In high capacity, dynamic WDM networks, blocking due to wavelength contention can he reduced by wavelength conversion. Wavelength conversion addresses a number of key issues in WDM networks including transparency, interoperability, and network capacity. Strictly transparent networks offer seamless interconnections with full reconfigurability and interoperability. Wavelength conversion may be the first obstacle in realizing a transparent WDM network. Among numerous wavelength conversion techniques reported to date, only a few techniques offer strict transparency. Optoelectronic conversion (O/E-E/O) techniques achieve limited transparency, yet their mature technologies allow deployment in the near future. The majority of all-optical wavelength conversion techniques also offer limited transparency but they have a potential advantage over the optoelectronic counterpart in realizing lower packaging costs and crosstalk when multiple wavelength array configurations are considered. Wavelength conversion by difference-frequency generation offers a full range of transparency while adding no excess noise to the signal. Recent experiments showed promising results including a spectral inversion and a 90 nm conversion bandwidth. This paper reviews various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent networks.

928 citations


Additional excerpts

  • ...(3) d d d d cos cos pA s 2 2 0 0 2 2 1 (1 ( ) 2 ( )) ( ) = ( t t x t t x t t + + + −       w g w b w w Γ Λ )...

    [...]