scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a simultaneous measurement system of temperature and relative humidity is proposed, which consists of a fiber Bragg grating (FBG) and Fabry-Perot (FP) interferometer.
Abstract: In this letter, a simultaneous measurement system of temperature and relative humidity is proposed, which consists of a fiber Bragg grating (FBG) and Fabry–Perot (FP) interferometer. The FP interferometer was fabricated by splicing the hollow capillary with a single-mode fiber and the end of the hollow capillary was filled with a layer of polyimide, achieving a humidity sensitivity of 22.07 pm/%RH in the range of 20–90 %RH. FBG is insensitive to humidity, which can be used to measure temperature and eliminate the obstruction of temperature on FP humidity probe by formula conversion. The temperature sensitivity of FBG is 9.98 pm/°C. Due to low cost and good stability, this system has broad application prospects in the fields of food processing, medical care, and food storage.

67 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...size, easy to manufacture, low cost, good stability [11], [12]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors presented an innovative and cost effective approach to produce sensors based on optical fiber microcavities by splicing a standard optical fiber with recycled optical fibers destroyed by the catastrophic fuse effect, yielding strain sensors with sensitivity up to 2.56 pm·μe-1.
Abstract: We present an innovative and cost effective approach to produced sensors based on optical fiber microcavities. The proposed microcavities were manufactured by splicing a standard optical fiber with recycled optical fibers destroyed by the catastrophic fuse effect, yielding strain sensors with sensitivity up to 2.56 pm·μe-1. The feasibility of this solution employing recycled optical fibers was demonstrated, presenting an economical solution for sensing purposes, when compared with cavities produced using complex methods. We also show, for the first time, that the sensitivity of these microcavities Fabry-Perot interferometers sensors depends on the cavity volume.

65 citations


Cites background or methods from "Interferometric Fiber Optic Sensors..."

  • ...The traditional FPI cavity operation is described considering the optical phase difference between the reflected signals after a complete round-trip (φF P I ), which is expressed as [7]:...

    [...]

  • ...The relevance of the FPI based sensors is observed in several recently works involving the production, application and characterization of microcavities, see references [7], [8] and references herein....

    [...]

Journal ArticleDOI
TL;DR: In this article, a novel optical fiber-based Fabry-Perot pressure sensor fabricated with a lensed fiber and a polymeric diaphragm is proposed for application in the medical field.
Abstract: A novel optical fiber-based Fabry–Perot pressure sensor fabricated with a lensed fiber and a polymeric diaphragm is proposed for application in the medical field. The lensed fiber was constructed at the tip of a single mode fiber, for use with a deformable flexible polymeric diaphragm. The sensor can reduce the loss of optical power of the back-reflected light, and the flexible diaphragm can increase deformation sensitivity. The lensed fiber was fabricated from a coreless silica fiber attached to a single mode fiber by splicing using a fusion splicing method, and arc discharge. The polymeric diaphragm consists of layered PDMS, parylene and gold mirror. The intermediate parylene layer is helpful to prevent cracking of the mirror when the diaphragm is deformed by external pressure. The polymeric diaphragm was fabricated by MEMS processing including spin-coating, vaporization, and sputtering. The deformation of the polymeric diaphragm was evaluated through numerical simulation. The change in cavity length between the lensed fiber and the polymeric diaphragm with external pressure was estimated using the interference generated from two reflected lights. Experimental results showed that the proposed pressure sensor has a sensitivity of 1.41 μm/kPa over a pressure range from 0 kPa to 4 kPa with good linearity, and its minimum detection resolution is less than 0.03 kPa. The proposed sensor could be used for reliable low-pressure measurement, especially in medical applications.

62 citations


Additional excerpts

  • ...t = C ′ 1 · v3 · E3 · (1 − v′2) + C ′ 2 · v′ · E′ · (1 − v(2)3) 2 C ′ 1 · E3 · (1 − v′2) + C ′ 2 · E′ · (1 − v(2)3) (5)...

    [...]

Journal ArticleDOI
TL;DR: This review summarizes the progress made in the past five years in the field of fiber-optic sensors: metals and metal oxides and their composites, and the second group comprises graphene, graphene oxide and CNTs, and its composites.
Abstract: The mesmerizing properties of nanomaterials and the features offered by optical fibers can be combined to result in an attractive new platform for chemical sensing. This review (with 230 refs.) summarizes the progress made in the past five years in the field of fiber-optic sensors: The first group comprises metals and metal oxides and their composites, and the second group comprises graphene, graphene oxides and CNTs, and its composites. By combining these nanocomposites with various optical fiber geometries, numerous sensors have been realized. Following an introduction, first section summarizes fiber-optic configuration for chemical sensing (including Fabry-Perot and Mach-Zehnder interferometry, surface plasmon resonance, and optical fiber gratings of the FBG and LPG type). The second section covers typical nanomaterials used in such sensors, with a first subsection on metals, metal oxides, their composites and nanostructured modifications, and a second subsection on graphenes, graphene oxides, carbon nanotubes, and their derivatives. Section 3 summarizes sensors (i) for various gaseous species (NH3, H2, CH4, H2S, CO2, NO2, O2), (ii) for volatile organic compounds (such as ethanol, methanol, acetone, toluene, and formaldehyde), and (iii) for heavy metal ions (such as Hg2+, Pb2+, Mg2+, Cd2+, Ni2+, and Mn2+). The merits and limitations of these nanomaterials and numerous examples for nanomaterial-based sensors are discussed and presented in the form of tables. A concluding section addresses technological challenges and future trends.

60 citations

Journal ArticleDOI
Ye Cao1, Liu Huiying1, Zhengrong Tong1, Shuo Yuan1, Jun Su1 
TL;DR: In this paper, an all-fiber sensor for simultaneous measurement of temperature and refractive index (RI) is proposed and demonstrated, which is composed of a Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG).

60 citations

References
More filters
MonographDOI
21 Dec 2017
TL;DR: In this paper, the authors present a comprehensive and engaging introduction to optics for intermediate and upper level undergraduate physics and engineering students, which allows instructors to select specialized content to suit individual curricular needs and goals.
Abstract: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

927 citations

Journal ArticleDOI
TL;DR: A detailed mechanism of the surface plasmon resonance (SPR) technique for sensing purposes has been discussed in this paper, where different new techniques and models in this area that have been introduced are discussed in quite a detail.
Abstract: Since the introduction of optical fiber technology in the field of sensor based on the technique of surface plasmon resonance (SPR), fiber-optic SPR sensors have witnessed a lot of advancements. This paper reports on the past, present, and future scope of fiber-optic SPR sensors in the field of sensing of different chemical, physical, and biochemical parameters. A detailed mechanism of the SPR technique for sensing purposes has been discussed. Different new techniques and models in this area that have been introduced are discussed in quite a detail. We have tried to put the different advancements in the order of their chronological evolution. The content of the review article may be of great importance for the research community who are to take the field of fiber-optic SPR sensors as its research endeavors.

824 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach-Zehnder interferometer realized on tapered single-mode optical fiber.
Abstract: An approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach–Zehnder interferometer realized on tapered single-mode optical fiber. The attenuation peak wavelength of the interference with specific order in the transmission spectrum shifts with changes in the environmental refractive index and temperature. By utilizing S-band and C/L-band light sources, simultaneous discrimination of refractive index and temperature with the tapered fiber Mach–Zehnder interferometer is demonstrated with the corresponding sensitivities of −23.188 nm/RIU (refractive index unit) and 0.071 nm/ °C, and −26.087 nm/RIU (blueshift) and 0.077 nm/°C (redshift) for the interference orders of 169 and 144, respectively.

551 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

418 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since it can utilize high reflecting mirrors, the extrinsic structure is useful to obtain a high finesse interference signal [23]....

    [...]

Journal ArticleDOI
TL;DR: As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Abstract: We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

418 citations


"Interferometric Fiber Optic Sensors..." refers background or methods in this paper

  • ...However, in this case, coupling to several cladding modes was observed and controlling the number of involved modes was not so simple [51]....

    [...]

  • ...Even with PCF, an MZI can be formed by simply fusion-splicing a piece of PCF between fibers with a small intentional deviation [51]....

    [...]

  • ...In reference [51], as low as 2 dB splicing loss was achieved by making the mode coupling to dominantly one cladding mode of the PCF....

    [...]