scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This article reviews sensing techniques that have been implemented with single-crystal sapphire fibers recently and provides a comprehensive summary of past research on SF sensing systems.
Abstract: High-temperature measurements are of significant importance in various harsh-environment engineering fields, such as fossil fuel production, and the metallurgical and aviation industries. In recent years, there is a steady trend to shift from conventional electronic sensors to optical fiber sensors for high-temperature applications. In particular, optical fiber sensors are small in size, immune to electromagnetic interference, readily applicable for remote sensing, have high elasticity, and incorporate capabilities for multiplexing and distributed sensing. However, commonly used fused silica optical fiber sensors exhibit severe limitations at ultrahigh temperatures due to significantly degraded optical and mechanical properties at temperatures >1000 °C. The excellent optical transparency, thermal and chemical stability, mechanical robustness, and high melting temperature (~2040 °C) of single-crystal sapphire fibers (SFs) make them a strong candidate for sensing applications in high-temperature environments. Translation of the sensing schemes from mature silica fiber sensors to SF sensors has undergone tremendous growth and advancements in the past two decades. However, hurdles to the development of a near-term deployable SF sensing system have proven persistent due to the highly multimodal nature of SFs. This article reviews sensing techniques that have been implemented with SFs recently. The aim is to provide a comprehensive summary of past research on SF sensing systems. Perspectives on further research into the challenging yet promising arena are also discussed.

27 citations


Additional excerpts

  • ...Sagnac, and Fizeau interferometers [26]....

    [...]

Journal ArticleDOI
24 Jan 2019-Sensors
TL;DR: A solution for continuous monitoring of both respiratory rate (RR) and heart rate (HR) inside Magnetic Resonance Imaging (MRI) environments by a novel ballistocardiography (BCG) fiber-optic sensor based on the Fiber Bragg Grating (FBG) probe encapsulated inside fiberglass.
Abstract: This article presents a solution for continuous monitoring of both respiratory rate (RR) and heart rate (HR) inside Magnetic Resonance Imaging (MRI) environments by a novel ballistocardiography (BCG) fiber-optic sensor. We designed and created a sensor based on the Fiber Bragg Grating (FBG) probe encapsulated inside fiberglass (fiberglass is a composite material made up of glass fiber, fabric, and cured synthetic resin). Due to this, the encapsulation sensor is characterized by very small dimensions (30 × 10 × 0.8 mm) and low weight (2 g). We present original results of real MRI measurements (conventionally most used 1.5 T MR scanner) involving ten volunteers (six men and four women) by performing conventional electrocardiography (ECG) to measure the HR and using a Pneumatic Respiratory Transducer (PRT) for RR monitoring. The acquired sensor data were compared against real measurements using the objective Bland⁻Altman method, and the functionality of the sensor was validated (95.36% of the sensed values were within the ±1.96 SD range for the RR determination and 95.13% of the values were within the ±1.96 SD range for the HR determination) by this means. The accuracy of this sensor was further characterized by a relative error below 5% (4.64% for RR and 4.87% for HR measurements). The tests carried out in an MRI environment demonstrated that the presence of the FBG sensor in the MRI scanner does not affect the quality of this imaging modality. The results also confirmed the possibility of using the sensor for cardiac triggering at 1.5 T (for synchronization and gating of cardiovascular magnetic resonance) and for cardiac triggering when a Diffusion Weighted Imaging (DWI) is used.

27 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...Mach–Zehnder interferometers [32], which are characterized by simpler and cheaper productions, have also been demonstrated....

    [...]

Journal ArticleDOI
TL;DR: In this article, a photonic crystal fiber, selectively filled by the sample cell, is proposed to detect the cancer cell based on the refractive index (RI), upon considering the change of optical properties of the proposed fiber due to different RI of normal and cancer cell, sensitivities are attained of 11,428.57, 17,142.85, 31, 428.57 and 34,285.71nm/RIU for Jurkat, PC12, MCF-7, and MDA-MB-231 cell from the transmission spectrum obtained by the Sagnac
Abstract: The light interaction with the cell of any part or organ of the body gives useful information regarding the changes in optical properties for different cells. A photonic crystal fiber, selectively filled by the sample cell is proposed to detect the cancer cell based on the refractive index (RI). Upon considering the change of optical properties of the proposed fiber due to different RI of normal and cancer cell, sensitivities are attained of 11,428.57, 17,142.85, 31,428.57, and 34,285.71 nm/RIU for Jurkat, PC12, MCF-7, and MDA-MB-231 cell from the transmission spectrum obtained by the Sagnac interferometer phenomena.

27 citations

Journal ArticleDOI
TL;DR: In this article, a low-cost intensity variation-based pressure sensor using polymer optical fibers (POFs) with high flexibility fabricated through the light polymerization spinning process is presented.

26 citations

Journal ArticleDOI
TL;DR: In this article, the design of a highly efficient integrated dual-mode interferometer with single-mode inputs and outputs and simple fabrication steps in a silicon-on-insulator platform with CMOS compatible technology is presented.
Abstract: The design of a highly efficient integrated dual-mode interferometer with single-mode inputs and outputs and simple fabrication steps in a silicon-on-insulator platform with CMOS compatible technology is presented. Consisting of only one waveguide and two special mode converters, the device offers high sensitivity and immunity to input power fluctuations and temperature changes. Special attention is paid to the design of low-loss mode converters with two single-mode outputs for total power tracking. Considerations on temperature influence, fabrication tolerances, and dual mode waveguide sensitivity conclude the theoretical part. Experimental results of a single-port dual-mode interferometer show extinction ratios up to 31 dB and insertion losses of less than 1 dB at a wavelength of 1550 nm. With an additional functional polymer layer, the selective detection of various concentrations of L-Boc-phenylalanine anilid in an ethanol-water solution is demonstrated.

26 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ..., fiber based DMI sensors [11] or integrated structures with vertical waveguide steps [12]....

    [...]

References
More filters
MonographDOI
21 Dec 2017
TL;DR: In this paper, the authors present a comprehensive and engaging introduction to optics for intermediate and upper level undergraduate physics and engineering students, which allows instructors to select specialized content to suit individual curricular needs and goals.
Abstract: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

927 citations

Journal ArticleDOI
TL;DR: A detailed mechanism of the surface plasmon resonance (SPR) technique for sensing purposes has been discussed in this paper, where different new techniques and models in this area that have been introduced are discussed in quite a detail.
Abstract: Since the introduction of optical fiber technology in the field of sensor based on the technique of surface plasmon resonance (SPR), fiber-optic SPR sensors have witnessed a lot of advancements. This paper reports on the past, present, and future scope of fiber-optic SPR sensors in the field of sensing of different chemical, physical, and biochemical parameters. A detailed mechanism of the SPR technique for sensing purposes has been discussed. Different new techniques and models in this area that have been introduced are discussed in quite a detail. We have tried to put the different advancements in the order of their chronological evolution. The content of the review article may be of great importance for the research community who are to take the field of fiber-optic SPR sensors as its research endeavors.

824 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach-Zehnder interferometer realized on tapered single-mode optical fiber.
Abstract: An approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach–Zehnder interferometer realized on tapered single-mode optical fiber. The attenuation peak wavelength of the interference with specific order in the transmission spectrum shifts with changes in the environmental refractive index and temperature. By utilizing S-band and C/L-band light sources, simultaneous discrimination of refractive index and temperature with the tapered fiber Mach–Zehnder interferometer is demonstrated with the corresponding sensitivities of −23.188 nm/RIU (refractive index unit) and 0.071 nm/ °C, and −26.087 nm/RIU (blueshift) and 0.077 nm/°C (redshift) for the interference orders of 169 and 144, respectively.

551 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

418 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since it can utilize high reflecting mirrors, the extrinsic structure is useful to obtain a high finesse interference signal [23]....

    [...]

Journal ArticleDOI
TL;DR: As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Abstract: We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

418 citations


"Interferometric Fiber Optic Sensors..." refers background or methods in this paper

  • ...However, in this case, coupling to several cladding modes was observed and controlling the number of involved modes was not so simple [51]....

    [...]

  • ...Even with PCF, an MZI can be formed by simply fusion-splicing a piece of PCF between fibers with a small intentional deviation [51]....

    [...]

  • ...In reference [51], as low as 2 dB splicing loss was achieved by making the mode coupling to dominantly one cladding mode of the PCF....

    [...]