scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 2018
TL;DR: In this article, the authors reviewed the field of research on design, development and experimental achievement of PCF-based interferometric sensors for physical and biomedical sensing applications for a broad range of sensing applications.
Abstract: Photonic crystal fibers (PCFs), also known as microstructured optical fibers, are a highlighted invention of optical fiber technology which have unveiled a new domain of manipulating light in engineered fiber waveguides with unparalleled flexibility and controllability. Since the report of the first fabricated PCF in 1996, research in PCFs has resulted in numerous explorations, development and commercialization of PCF-based technologies and applications. PCFs contain axially aligned air channels which provide a large degree of freedom in design to achieve a variety of peculiar properties; numerous PCF-based sensors have been proposed, developed and demonstrated for a broad range of sensing applications. In this chapter, we will review the field of research on design, development and experimental achievement of PCF-based interferometric sensors for physical and biomedical sensing applications.

5 citations

Journal ArticleDOI
25 Mar 2022-Sensors
TL;DR: In this article , the authors deduced and summarized the methods of sensitivity enhancement in interferometer-based fiber optical sensors, including the derivation of the sensing principles, key characteristics, and recently reported applications.
Abstract: Optical fiber sensors based on an interferometer structure play a significant role in monitoring physical, chemical, and biological parameters in natural environments. However, sensors with high-sensitivity measurement still present their own challenges. This paper deduces and summarizes the methods of sensitivity enhancement in interferometer based fiber optical sensors, including the derivation of the sensing principles, key characteristics, and recently-reported applications.The modal coupling interferometer is taken as an example to derive the five terms related to the sensitivity: (1) the wavelength-dependent difference of phase between two modes/arms ∂ϕd/∂λ, (2) the sensor length Lw,A, (3) refractive index difference between two modes/arms Δneff,A, (4) sensing parameter dependent length change α, and (5) sensing parameter dependent refractive index change γ. The research papers in the literature that modulate these terms to enhance the sensing sensitivity are reviewed in the paper.

5 citations

Proceedings ArticleDOI
TL;DR: In this paper, a fiber spectrometer for multispectral imaging is presented, which integrates serial arrays of reflecting fiber tips, delay lines between these elements, and a single element detector.
Abstract: Compact optical systems can be fabricated by integrating coatings on fiber tips. Examples include fiber lasers, fiber interferometers, fiber Raman probes, fiber based spectrometers, and anti-reflected endoscopes. These interference filters are applied to exposed tips – either connectorized or cleaved. Coatings can also be immersed within glass by depositing on one tip and connecting to another uncoated tip. This paper addresses a fiber spectrometer for multispectral imaging - useful in several fields including biomedical scanning, flow cytometry, and remote sensing. Our spectrometer integrates serial arrays of reflecting fiber tips, delay lines between these elements, and a single element detector.

5 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...Potential applications include fiber lasers, fiber interferometers, fiber Raman probes, fiber based spectrometers, and anti-reflected endoscopes.(1,2,3,4) Many fiber configurations are applicable, including single and multimode designs....

    [...]

Proceedings ArticleDOI
05 Mar 2021
Abstract: Paper describes an optical fiber-based sensing system to monitor events along and/or about various objects like railway lines, product lines and object perimeters. Complex architecture of the system involving interrogating nodes, configuration and event data nodes, control center and supervising center is presented. System properties are described. The system was designed and built and results obtained from real application are presented.

5 citations

Patent
09 Mar 2016
TL;DR: In this article, a Michelson interferometric optical-fiber hydrogen sensor based on a PM-PCF is presented, which is composed of a broadband laser source, a polarization controller, a first transmission optical fiber, a 3-dB coupler, a second transmission optical fibre, the PM-Pd/Ag thin film, a third transmission optical fibres, a fourth transmission optical fibers, a spectrograph and a constant-temperature air chamber.
Abstract: The invention discloses a Michelson interferometric optical-fiber hydrogen sensor based on a PM-PCF The Michelson interferometric optical-fiber hydrogen sensor is composed of a broadband laser source, a polarization controller, a first transmission optical fiber, a 3-dB coupler, a second transmission optical fiber, the PM-PCF plated with a Pd/Ag thin film, a third transmission optical fiber, a fourth transmission optical fiber, a spectrograph and a constant-temperature air chamber Lasers emitted by the broadband laser source pass through the polarization controller, and a linearly-polarized laser beam is obtained and divided by the 3-dB coupler into two same laser beams which enter the PM-PCF plated with the Pd/Ag thin film and the third transmitting optical fiber respectively As the Pd/Ag thin film absorbs hydrogen, swells and presses an air hole in the PM-PCF, the phase of a transmission mode in a film plating area is changed, and the two laser beams are reflected through the end faces and then gathered at the transmitting end of the 3-dB coupler; as the constant phase difference exists and interference occurs, an interference spectrum is received by the spectrograph As the corresponding relationship exists between the drifting amount of the interference spectrum and the concentration of the hydrogen, the concentration of the hydrogen is accurately measured The Michelson interferometric optical-fiber hydrogen sensor is simple in structure, high in sensitivity and small in temperature drifting A feasible scheme is provided for online monitoring of the concentration of the hydrogen

5 citations

References
More filters
MonographDOI
21 Dec 2017
TL;DR: In this paper, the authors present a comprehensive and engaging introduction to optics for intermediate and upper level undergraduate physics and engineering students, which allows instructors to select specialized content to suit individual curricular needs and goals.
Abstract: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

927 citations

Journal ArticleDOI
TL;DR: A detailed mechanism of the surface plasmon resonance (SPR) technique for sensing purposes has been discussed in this paper, where different new techniques and models in this area that have been introduced are discussed in quite a detail.
Abstract: Since the introduction of optical fiber technology in the field of sensor based on the technique of surface plasmon resonance (SPR), fiber-optic SPR sensors have witnessed a lot of advancements. This paper reports on the past, present, and future scope of fiber-optic SPR sensors in the field of sensing of different chemical, physical, and biochemical parameters. A detailed mechanism of the SPR technique for sensing purposes has been discussed. Different new techniques and models in this area that have been introduced are discussed in quite a detail. We have tried to put the different advancements in the order of their chronological evolution. The content of the review article may be of great importance for the research community who are to take the field of fiber-optic SPR sensors as its research endeavors.

824 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach-Zehnder interferometer realized on tapered single-mode optical fiber.
Abstract: An approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach–Zehnder interferometer realized on tapered single-mode optical fiber. The attenuation peak wavelength of the interference with specific order in the transmission spectrum shifts with changes in the environmental refractive index and temperature. By utilizing S-band and C/L-band light sources, simultaneous discrimination of refractive index and temperature with the tapered fiber Mach–Zehnder interferometer is demonstrated with the corresponding sensitivities of −23.188 nm/RIU (refractive index unit) and 0.071 nm/ °C, and −26.087 nm/RIU (blueshift) and 0.077 nm/°C (redshift) for the interference orders of 169 and 144, respectively.

551 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

418 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since it can utilize high reflecting mirrors, the extrinsic structure is useful to obtain a high finesse interference signal [23]....

    [...]

Journal ArticleDOI
TL;DR: As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Abstract: We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

418 citations


"Interferometric Fiber Optic Sensors..." refers background or methods in this paper

  • ...However, in this case, coupling to several cladding modes was observed and controlling the number of involved modes was not so simple [51]....

    [...]

  • ...Even with PCF, an MZI can be formed by simply fusion-splicing a piece of PCF between fibers with a small intentional deviation [51]....

    [...]

  • ...In reference [51], as low as 2 dB splicing loss was achieved by making the mode coupling to dominantly one cladding mode of the PCF....

    [...]