scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The novel modal interferometer architecture based on a single MI-LPFG, combined with a functionalized nanoparticles coating film, offers an attractive platform for the development of fiber sensors and other fiber-based devices.
Abstract: A modal interferometer by a single mechanically induced long-period fiber grating (MI-LPFG) using a half-length coating fiber is presented. The coating material used for this Letter is a film of silica nanoparticles doped with an organic chromophore. The silica nanoparticles, with diameters within the range of 40–50 nm, were deposited over 3.5 cm length of fiber by the dip-coating method, forming a film with a thickness between 500 and 1250 nm. Then the modal interferometer was implemented by inscribing the MI-LPFG over the coated fiber section and a similar fiber length of the uncoated fiber. The experimental results show high-contrast transmission bands, where the position and depth of the absorption envelope band are finely selected by the grating period, the pressure applied, and the film thickness. The novel modal interferometer architecture based on a single MI-LPFG, combined with a functionalized nanoparticles coating film, offers an attractive platform for the development of fiber sensors and other fiber-based devices.

4 citations

Journal ArticleDOI
TL;DR: An overview of the basic principles, development, and applications of optical fiber magnetic field sensors is provided in this paper , where the sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail.
Abstract: Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

4 citations

Journal ArticleDOI
TL;DR: In this paper, a deformation sensing technique with a multimode plastic optical fiber based on intensity speckle patterns' correlation coefficient measurement has been presented, which provides a good linear response to the applied deformation in a relatively wide operation region.
Abstract: A deformation sensing technique with a multimode plastic optical fibre based on intensity speckle patterns’ correlation coefficient measurement has been presented. Influence of the average speckle size on results of deformation measuring has been studied and discussed. The presented sensing technique provides a good linear response to the applied deformation in a relatively wide operation region. It is shown that the proposed technique is highly sensitive, low-cost and simple to implement in practice.

4 citations

Proceedings ArticleDOI
01 Nov 2015
TL;DR: In this article, a fiber interferometer interfaced to 3 geo-mechanical elements is presented for applications in geophysics, and the fiber sensor is based on an extrinsic fiber Fabry-Perot interFERometer (EFFPI) which incorporates a modulation scheme to lock the inter-ferometer at quadrature and to enable displacement measurements below a quarter of the interrogating wavelength.
Abstract: A fiber interferometer interfaced to 3 geo-mechanical elements is presented for applications in geophysics. The fiber sensor is based on an extrinsic fiber Fabry-Perot interferometer (EFFPI) which incorporates a modulation scheme to lock the interferometer at quadrature and to enable displacement measurements below a quarter of the interrogating wavelength. It operates over a relatively large frequency dynamic of ∼500000 with a precision better than 2 nm. The fiber interferometer is next interfaced to a differential hydrostatic long baseline inclinometer, a 3-axis borehole tiltmeter and a single-axis seismometer, respectively. Results obtained demonstrate that the fiber interferometrically-interrogated instruments exhibit performances equivalent to or even surpassing those of the reference instruments employed for comparison during their deployment to an underground test site since March 2012.

4 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...The potential extreme performance achievable with these devices has seen their uses in various high-precision metrological applications where very high accuracy and resolution are desired [8]....

    [...]

Proceedings ArticleDOI
04 Oct 2012
TL;DR: In this article, an extrinsic Fabry-Perot interferometer (FPI) composed of a palladium (Pd)-coated high finesse cavity is proposed and experimentally demonstrated.
Abstract: Fiber-optic hydrogen sensing technique based on an extrinsic Fabry-Perot interferometer (FPI) composed of a palladium (Pd)-coated high finesse cavity is proposed and experimentally demonstrated. As the Pd layer absorbs hydrogen gas, the FPI cavity length is reduced so that we can measure the wavelength shift of its interference spectrum. The sensing performance of the proposed sensor is presented in terms of spectral response to hydrogen and recovery by nitrogen. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

4 citations


Additional excerpts

  • ...The phase factor of the FPI reflection spectrum can be expressed as [8] 4 n L π λ Ψ = ⋅ ⋅ (1)...

    [...]

References
More filters
MonographDOI
21 Dec 2017
TL;DR: In this paper, the authors present a comprehensive and engaging introduction to optics for intermediate and upper level undergraduate physics and engineering students, which allows instructors to select specialized content to suit individual curricular needs and goals.
Abstract: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

927 citations

Journal ArticleDOI
TL;DR: A detailed mechanism of the surface plasmon resonance (SPR) technique for sensing purposes has been discussed in this paper, where different new techniques and models in this area that have been introduced are discussed in quite a detail.
Abstract: Since the introduction of optical fiber technology in the field of sensor based on the technique of surface plasmon resonance (SPR), fiber-optic SPR sensors have witnessed a lot of advancements. This paper reports on the past, present, and future scope of fiber-optic SPR sensors in the field of sensing of different chemical, physical, and biochemical parameters. A detailed mechanism of the SPR technique for sensing purposes has been discussed. Different new techniques and models in this area that have been introduced are discussed in quite a detail. We have tried to put the different advancements in the order of their chronological evolution. The content of the review article may be of great importance for the research community who are to take the field of fiber-optic SPR sensors as its research endeavors.

824 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach-Zehnder interferometer realized on tapered single-mode optical fiber.
Abstract: An approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach–Zehnder interferometer realized on tapered single-mode optical fiber. The attenuation peak wavelength of the interference with specific order in the transmission spectrum shifts with changes in the environmental refractive index and temperature. By utilizing S-band and C/L-band light sources, simultaneous discrimination of refractive index and temperature with the tapered fiber Mach–Zehnder interferometer is demonstrated with the corresponding sensitivities of −23.188 nm/RIU (refractive index unit) and 0.071 nm/ °C, and −26.087 nm/RIU (blueshift) and 0.077 nm/°C (redshift) for the interference orders of 169 and 144, respectively.

551 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

418 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since it can utilize high reflecting mirrors, the extrinsic structure is useful to obtain a high finesse interference signal [23]....

    [...]

Journal ArticleDOI
TL;DR: As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Abstract: We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

418 citations


"Interferometric Fiber Optic Sensors..." refers background or methods in this paper

  • ...However, in this case, coupling to several cladding modes was observed and controlling the number of involved modes was not so simple [51]....

    [...]

  • ...Even with PCF, an MZI can be formed by simply fusion-splicing a piece of PCF between fibers with a small intentional deviation [51]....

    [...]

  • ...In reference [51], as low as 2 dB splicing loss was achieved by making the mode coupling to dominantly one cladding mode of the PCF....

    [...]