scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
28 Sep 2015
TL;DR: In this article, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented, which was generated by the recycling of optical fiber previously damaged by the fiber fuse effect.
Abstract: In this work, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented. These micro structures were generated by the recycling of optical fiber previously damaged by the fiber fuse effect, resulting in a cost effective solution when compared with the traditional methods used to produce similar micro-cavities. The developed sensor was tested for pressures ranging from 20.0 to 190.0 cmH 2 O and a sensitivity of 53.7 ± 2.6 pm/cmH 2 O for hydrostatic pressures below to 100 cmH 2 O was achieved.

1 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...Nevertheless, their production cost still requires high economical investments and complex implementations [5-8]....

    [...]

Proceedings ArticleDOI
01 Apr 2020
TL;DR: In this article, the authors considered the sensing characteristics of a compact all-in-fiber Mach-Zehnder interferometer (MZI) inscribed using a femtosecond laser.
Abstract: We consider the sensing characteristics of a compact all-in-fiber Mach-Zehnder interferometer (MZI) inscribed using a femtosecond laser. The structure was created in the cladding of a single-mode optical fiber close to the cladding-air interface (<5μm gap) to deviate light from the core and encourage evanescent field interaction with the fiber’s surroundings. This compact device features a refractive index sensitivity beyond 5000 nm/RIU in aqueous solutions. Two fiber Bragg gratings (FBGs) were also manufactured, one in the pristine fiber core and the other in the cladding MZI and are monitored for sensing purposes. We used the plane-by plane (Pl-by-Pl) fabrication method, ensuring reliability and repeatability in the sensor development, as all gratings and MZI were inscribed with the same femtosecond laser parameters. We focus on the device response to changes in temperature, strain, bend, surrounding refractive index and relative humidity. By combining the compound sensor with a core FBG we produced a device capable of measuring multiple parameters using the same demodulation equipment, whilst simultaneously enhancing and individually separating each measurand of interest.

1 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...developed in many optical fiber configurations, through the use of, for example, a set of long period gratings (LPGs) [4], tapering [5], splicing with mismatch [6] or with specialty fibers [7], air-hole collapsing of photonic crystal fiber (PCF) and multimode optical fiber (MMF) segment [8] or by creating in-fiber cladding waveguides [9]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an optical pressure sensor based on the principle of Fabry-Perot Interferometer (FPI) is designed for pressures range of 1 bar absolute, which results in trapped gas in the sealed reference cavity.
Abstract: An optical pressure sensor working on the principle of Fabry–Perot Interferometer (FPI) is designed for pressures range of 1 bar absolute. The sensor is based on MEMS fabrication technology involving micromachined silicon diaphragm and anodic bonding with glass wafer. The fabrication results in trapped gas in the sealed reference cavity. The pressure of gas is likely to change with the movement of diaphragm in response to applied pressure. To find the deflection of diaphragm in presence of ‘deflection-dependent reference pressure’, a finite element (FE) based model of sensor is developed. The model includes structural as well as fluidic parts for diaphragm and the trapped gas respectively. The reference pressure as well as diaphragm deflection are evaluated at various applied pressures. The FE simulations are carried out for sensor models of various cavity lengths. It is established that the span of the sensor gets reduced (suppressed) for small cavity lengths. Two types of sensors are fabricated and tested. Close agreement is found between theoretically predicted and experimentally observed values.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors developed and analyzed a sensor system based on multiplexed intensity variation sensors using a polymer optical fiber (POF), which is based on a multiplexing technique from sidecoupling of light emitting diodes (LEDs) with the sequential activation of the light sources.

1 citations

Proceedings ArticleDOI
01 Sep 2017
TL;DR: In this article, a thin boron-doped diamond film was proposed for application in the interferometry as a highly durable optical mirror, which can be used even in the chemically aggressive environment, where commonly used silver mirrors can be susceptible to damage.
Abstract: In presented study a thin boron-doped diamond film was proposed for application in the interferometry as a highly durable optical mirror. The unique properties of the diamond films, like high chemical stability and hardness, allow them to be used even in the chemically aggressive environment, where the commonly used silver mirrors can be susceptible to damage. The investigated nanodiamond layer was fabricated by uPE CVD method on a glass plate and the boron concentration in the gas phase was 7500 ppm. The mirror made from this layer was exposed to several corrosive acids and then the optical properties and surface quality of the film was examined by optical microscopy. To further evaluate the performance of the proposed mirror, it was placed in a fiber optic Fabry-Pѐrot interferometer and the quality of the detected spectra was also analyzed. Performed measurements allow us to conclude that the thin film diamond mirror is well suited for the application in the optical interferometer and it ensures high resistance to the harsh environmental conditions.

1 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...The intensity of the interference signal reflected from such a Fabry-Pѐrot interferometer can be expressed as(5): IR = I0[R + R(1 − R) 2 + 2R(1 − R)cosφ], (1) where R – mirror reflectivity, I0 – spectral distribution of light intensity, φ – phase difference between interfering beams....

    [...]

References
More filters
MonographDOI
21 Dec 2017
TL;DR: In this paper, the authors present a comprehensive and engaging introduction to optics for intermediate and upper level undergraduate physics and engineering students, which allows instructors to select specialized content to suit individual curricular needs and goals.
Abstract: Introduction to Optics is now available in a re-issued edition from Cambridge University Press. Designed to offer a comprehensive and engaging introduction to intermediate and upper level undergraduate physics and engineering students, this text also allows instructors to select specialized content to suit individual curricular needs and goals. Specific features of the text, in terms of coverage beyond traditional areas, include extensive use of matrices in dealing with ray tracing, polarization, and multiple thin-film interference; three chapters devoted to lasers; a separate chapter on the optics of the eye; and individual chapters on holography, coherence, fiber optics, interferometry, Fourier optics, nonlinear optics, and Fresnel equations.

927 citations

Journal ArticleDOI
TL;DR: A detailed mechanism of the surface plasmon resonance (SPR) technique for sensing purposes has been discussed in this paper, where different new techniques and models in this area that have been introduced are discussed in quite a detail.
Abstract: Since the introduction of optical fiber technology in the field of sensor based on the technique of surface plasmon resonance (SPR), fiber-optic SPR sensors have witnessed a lot of advancements. This paper reports on the past, present, and future scope of fiber-optic SPR sensors in the field of sensing of different chemical, physical, and biochemical parameters. A detailed mechanism of the SPR technique for sensing purposes has been discussed. Different new techniques and models in this area that have been introduced are discussed in quite a detail. We have tried to put the different advancements in the order of their chronological evolution. The content of the review article may be of great importance for the research community who are to take the field of fiber-optic SPR sensors as its research endeavors.

824 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach-Zehnder interferometer realized on tapered single-mode optical fiber.
Abstract: An approach to achieve simultaneous measurement of refractive index and temperature is proposed by using a Mach–Zehnder interferometer realized on tapered single-mode optical fiber. The attenuation peak wavelength of the interference with specific order in the transmission spectrum shifts with changes in the environmental refractive index and temperature. By utilizing S-band and C/L-band light sources, simultaneous discrimination of refractive index and temperature with the tapered fiber Mach–Zehnder interferometer is demonstrated with the corresponding sensitivities of −23.188 nm/RIU (refractive index unit) and 0.071 nm/ °C, and −26.087 nm/RIU (blueshift) and 0.077 nm/°C (redshift) for the interference orders of 169 and 144, respectively.

551 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

418 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since it can utilize high reflecting mirrors, the extrinsic structure is useful to obtain a high finesse interference signal [23]....

    [...]

Journal ArticleDOI
TL;DR: As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Abstract: We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from 2.83×10-3 to 4.65 ×10-3 . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

418 citations


"Interferometric Fiber Optic Sensors..." refers background or methods in this paper

  • ...However, in this case, coupling to several cladding modes was observed and controlling the number of involved modes was not so simple [51]....

    [...]

  • ...Even with PCF, an MZI can be formed by simply fusion-splicing a piece of PCF between fibers with a small intentional deviation [51]....

    [...]

  • ...In reference [51], as low as 2 dB splicing loss was achieved by making the mode coupling to dominantly one cladding mode of the PCF....

    [...]