scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interferometric Fiber Optic Sensors

23 Feb 2012-Sensors (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 12, Iss: 3, pp 2467-2486
TL;DR: Each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields and some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications.
Abstract: Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
30 Jul 2015-Sensors
TL;DR: Recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.
Abstract: In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

461 citations


Cites background or methods from "Interferometric Fiber Optic Sensors..."

  • ...Sensors based on the Mach-Zender, and Michelson interferometers, also using long period gratings (LPGs) and photonic crystal fibres (PCFs) [14,15], have been used preferably for refractive index [16], temperature [17] or velocity measurement [18], while the Sagnac interferometer has been applied mainly to rotation measurements [19]....

    [...]

  • ...The operation of interferometric sensors [14] is based on the change of the optical phase difference between two light waves with the same frequency, caused by the variation of a physical quantity....

    [...]

Journal ArticleDOI
24 Apr 2014-Sensors
TL;DR: A wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications in a study on interferometric optical fiber sensors.
Abstract: Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

291 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...To the extent of the authors‘ knowledge, there are a few review articles that have partly talked about the common fabrication, sensing technologies and measurands of Fabry-Perot Interferometric fiber-optic sensors, including [44], which only covers microcavities that play a significant role in forming FPI, vibration sensing in [45], strain measurement in [46], acousto-ultrasonic sensing in [47], and also includes a number of recent reviews given in [48] where the recent trends of FPI fabrication, methods and application are presented....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Abstract: DOI: 10.1002/adom.201801433 Scientific American selects plasmonic sensing as the top 10 emerging technologies of 2018.[15] Almost every single new plasmonic or photonic structure would be explored to test its sensing ability.[16–29] These works tend to report the sensing performance of their own structure. Some declare that their sensitivity breaks the world record. However, there is still a missing literature on what the world record really is, the gap between the experiments and the theoretical limit, as well as the differences between metal-based plasmonic sensors and dielectric-based photonic sensors. To push plasmonic and photonic sensors into industrial applications, an optical sensing technology map is absolutely necessary. This review aims to cover a wide range of most representative plasmonic and photonic sensors, and place them into a single map. The sensor performances of different structures will be distinctly illustrated. Future researchers could plot the sensing ability of their new sensors into this technology map and gauge their performances in this field. In this review, we focus on optical refractive index (RI) sensors with no fluorescent labeling required. We will utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM). For simplicity, we restrict our discussions to bulk RI change, where the change in RI occurs within the whole sample. There is another case where the RI variation occurs only within a very small volume close to the sensor surface. This surface RI sensitivity is proportional to the bulk RI sensitivity, the ratio of the thickness of the layer within which the surface RI variation occurs, and the penetration depth of the optical mode.[6] The bulk RI sensitivity defines the ratio of the change in sensor output (e.g., resonance angle, intensity, or resonant wavelength) to the bulk RI variations. Here, we limit our discussions to the spectral interrogations and the bulk RI sensitivity SRI is given by[3,5–7,30]

259 citations

Journal ArticleDOI
15 Jan 2016-Sensors
TL;DR: An overview of the different types of FOS used for strain/temperature sensing in composite materials and their compatibility with and suitability for embedding inside a composite material is presented.
Abstract: This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

252 citations


Cites background from "Interferometric Fiber Optic Sensors..."

  • ...A Fabry-Perot interferometer (FPI) generally comprises of two parallel reflecting surfaces separated by a certain distance [66]....

    [...]

  • ...It is possible to tune the intensity of the interferometric modes of an EFPI sensor by varying the gap between the two reflecting surfaces [66]....

    [...]

  • ...Interferometric fiber sensors [66] can also be employed for strain/temperature measurements in composite materials and this is discussed in detail in this section....

    [...]

  • ...The reflection or transmission spectrum of an FPI is a wavelength dependent intensity modulation of the input light spectrum, resulting from the optical phase difference between the reflected and transmitted beams [66,67]....

    [...]

  • ...The optical phase difference between reflected or transmitted beams at a particular wavelength of the FPI is basically specified as [66]:...

    [...]

Journal ArticleDOI
TL;DR: In this article, the optical fiber sensors employed in environmental monitoring are summarized for understanding of their sensing principles and fabrication processes, followed by discussion on the potentials of OFS in manufacturing.
Abstract: Environmental monitoring has become essential in order to deal with environmental resources efficiently and safely in the realm of green technology. Environmental monitoring sensors are required for detection of environmental changes in industrial facilities under harsh conditions, (e.g. underground or subsea pipelines) in both the temporal and spatial domains. The utilization of optical fiber sensors is a promising scheme for environmental monitoring of this kind, owing to advantages including resistance to electromagnetic interference, durability under extreme temperatures and pressures, high transmission rate, light weight, small size, and flexibility. In this paper, the optical fiber sensors employed in environmental monitoring are summarized for understanding of their sensing principles and fabrication processes. Numerous specific applications in petroleum engineering, civil engineering, and agricultural engineering are explored, followed by discussion on the potentials of OFS in manufacturing.

236 citations

References
More filters
Journal ArticleDOI
TL;DR: An interference pattern in the transmission spectrum of the proposed device was obtained and the interference pattern was found to shift to the longer wavelength region with respect to temperature variation.
Abstract: We report a simple fiber sensor for measurement of high temperature with high sensitivity. The sensing head is a multimode-single mode-multimode (MM-SM-MM) fiber configuration formed by splicing a section of uncoated single mode fiber (SMF) with two short sections of multimode fibers (MMF) whose core is composed of pure silica. Because of the mode-field mismatch at the splicing points of the SMF with 2 sections of MMFs, as well as index matching between the core of the MMF and the cladding of the SMF, optical power from the lead-in fiber can be partly coupled to the cladding modes of the SMF through the MMF. The cladding modes of the SMF then re-coupled to the lead-out fiber, in the same fashion. Due to the effective index difference between the core and cladding modes, an interference pattern in the transmission spectrum of the proposed device was obtained. The interference pattern was found to shift to the longer wavelength region with respect to temperature variation. The temperature sensor can measure temperature stably up to more than 900 °C with sensitivity of 0.088 nm/°C.

393 citations

Journal ArticleDOI
TL;DR: In this article, the optical amplification technology is adopted into the EFPI sensor system to enhance the interferometric signal considerably, and both spatial-frequency multiplexing and coarse-wavelength division multiple-xing technologies are demonstrated for the Fizeau sensor in order to realize the measurement of multiple parameters such as displacement, transverse load, static strain, temperature, and vibration.

356 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Indeed, some fiber optic sensors are used for real time deformation monitoring of aircrafts, ships, bridges, and constructions [17]....

    [...]

  • ...The extrinsic FPI sensor uses the reflections from an external cavity formed out of the interesting fiber [17]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors was realized, which combines very small size, high finesse, small waist and mode volume, and good mode matching between the fiber and cavity modes.
Abstract: We have realized a fiber-based Fabry–Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse , small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose–Einstein condensates enabled by this cavity (Colombe Y et al 2007 Nature 450 272). It will also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

342 citations

Journal ArticleDOI
TL;DR: A miniature Fabry-Perot (FP) interferometric fiber-optic sensor suitable for high-temperature sensing is proposed and demonstrated and shows that the thermal-optics effect of the cavity material is much more appreciable than its thermal expansion.
Abstract: A miniature Fabry-Perot (FP) interferometric fiber-optic sensor suitable for high-temperature sensing is proposed and demonstrated. The sensor head consists of two FP cavities formed by fusion splicing a short hollow-core fiber and a piece of single-mode fiber at a photonic crystal fiber in series. The reflection spectra of an implemented sensor are measured at several temperatures and analyzed in the spatial frequency domain. The experiment shows that the thermal-optic effect of the cavity material is much more appreciable than its thermal expansion. The temperature measurements up to 1000 degrees C with a step of 50 degrees C confirm that it could be applicable as a high-temperature sensor.

340 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...Since the HOF cavity and the MMF cavity have different thermo-optic coefficients, the temperature-induced movement of the first peak is different from the movements of the other peaks [37]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a fiber Mach-Zehnder interferometer was realized by concatenating two singlemode fiber tapers separated by a middle section, which had a minimum insertion loss of 3 dB and maximum interferometric extinction ratio over 20 dB.
Abstract: A novel refractive index (RI) sensor based on a fiber Mach-Zehnder interferometer was realized by concatenating two single-mode fiber tapers separated by a middle section. The proposed device had a minimum insertion loss of 3 dB and maximum interferometric extinction ratio over 20 dB. The resolution (0.171 nm) of the two-taper sensor to its surrounding RI change (0.01) was found to be comparable to that (0.252 nm) of similar structures made from an identical long-period gratings pair, and its ease of fabrication makes it a low-cost alternative to existing sensing applications.

334 citations


"Interferometric Fiber Optic Sensors..." refers background in this paper

  • ...By tapering a fiber at two points along the fiber, we can form an effective in-line MZI as shown in Figure 7(f) [55,56]....

    [...]