scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/S2666-5247(21)00027-6

Interferon antagonism by SARS-CoV-2: a functional study using reverse genetics

04 Mar 2021-Vol. 2, Iss: 5
Abstract: Summary Background The COVID-19 agent, SARS-CoV-2, is conspecific with SARS-CoV, the causal agent of the severe acute respiratory syndrome epidemic in 2002–03. Although the viruses share a completely homologous repertoire of proteins and use the same cellular entry receptor, their transmission efficiencies and pathogenetic traits differ. We aimed to compare interferon antagonism by SARS-CoV and SARS-CoV-2. Methods For this functional study, we infected Vero E6 and Calu-3 cells with strains of SARS-CoV and SARS-CoV-2. We studied differences in cell line-specific replication (Vero E6 vs Calu-3 cells) and analysed these differences in relation to TMPRSS2-dependent cell entry based on inhibition with the drug camostat mesilate. We evaluated viral sensitivity towards type I interferon treatment and assessed cytokine induction and type I interferon signalling in the host cells by RT-PCR and analysis of transcription factor activation and nuclear translocation. Based on reverse genetic engineering of SARS-CoV, we investigated the contribution of open reading frame 6 (ORF6) to the observed phenotypic differences in interferon signalling, because ORF6 encodes an interferon signalling antagonist. We did a luciferase-based interferon-stimulated response element promotor activation assay to evaluate the antagonistic capacity of SARS-CoV-2 wild-type ORF6 constructs and three mutants (Gln51Glu, Gln56Glu, or both) that represent amino acid substitutions between SARS-CoV and SARS-CoV-2 protein 6 in the carboxy-terminal domain. Findings Overall, replication was higher for SARS-CoV in Vero E6 cells and for SARS-CoV-2 in Calu-3 cells. SARS-CoV-2 was reliant on TMPRSS2, found only in Calu-3 cells, for more efficient entry. SARS-CoV-2 was more sensitive to interferon treatment, less efficient in suppressing cytokine induction via IRF3 nuclear translocation, and permissive of a higher level of induction of interferon-stimulated genes MX1 and ISG56. SARS-CoV-2 ORF6 expressed in the context of a fully replicating SARS-CoV backbone suppressed MX1 gene induction, but this suppression was less efficient than that by SARS-CoV ORF6. Mutagenesis showed that charged amino acids in residues 51 and 56 shift the phenotype towards more efficient interferon antagonism, as seen in SARS-CoV. Interpretation SARS-CoV-2 ORF6 interferes less efficiently with human interferon induction and interferon signalling than SARS-CoV ORF6. Because of the homology of the genes, onward selection for fitness could involve functional optimisation of interferon antagonism. Charged amino acids at positions 51 and 56 in ORF6 should be monitored for potential adaptive changes. Funding Bundesministerium fur Bildung und Forschung, EU RECOVER project.

... read more

Topics: IRF3 (63%), Vero cell (60%), Interferon (59%) ... read more
Citations
  More

16 results found


Open accessJournal ArticleDOI: 10.3390/MICROORGANISMS9091820
26 Aug 2021-
Abstract: (1) Background: Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the coronavirus disease (COVID-19) that has led to a pandemic that began in March 2020. The role of the SARS-CoV-2 components on innate and adaptive immunity is still unknown. We investigated the possible implication of pathogen-associated molecular patterns (PAMPs)-pattern recognition receptors (PRRs) interaction. (2) Methods: We infected Calu-3/MRC-5 multicellular spheroids (MTCSs) with a SARS-CoV-2 clinical strain and evaluated the activation of RNA sensors, transcription factors, and cytokines/interferons (IFN) secretion, by quantitative real-time PCR, immunofluorescence, and ELISA. (3) Results: Our results showed that the SARS-CoV-2 infection of Calu-3/MRC-5 multicellular spheroids induced the activation of the TLR3 and TLR7 RNA sensor pathways. In particular, TLR3 might act via IRF3, producing interleukin (IL)-1α, IL-1β, IL-4, IL-6, and IFN-α and IFN-β, during the first 24 h post-infection. Then, TLR3 activates the NFκB transduction pathway, leading to pro-inflammatory cytokine secretion. Conversely, TLR7 seems to mainly act via NFκB, inducing type 1 IFN, IFN-γ, and IFN-λ3, starting from the 48 h post-infection. (4) Conclusion: We showed that both TLR3 and TLR7 are involved in the control of innate immunity during lung SARS-CoV-2 infection. The activation of TLRs induced pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-4, and IL-6, as well as interferons. TLRs could be a potential target in controlling the infection in the early stages of the disease.

... read more

Topics: TLR3 (59%), Cytokine secretion (57%), TLR7 (56%) ... read more

5 Citations


Journal ArticleDOI: 10.1080/08830185.2021.1961768
Abstract: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.

... read more

Topics: Context (language use) (50%)

2 Citations


Open accessPosted ContentDOI: 10.1101/2021.04.06.438630V1
06 Apr 2021-bioRxiv
Abstract: SARS-CoV-2 antagonises the cellular interferon response, but whether the virus manipulates cellular immunity is unclear. An unbiased proteomic approach to determine how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells showed downregulation of activating NK cell ligands: B7-H6, MICA, ULBP2, and Nectin1, but no effect on surface MHC-I expression. NK ligand downregulation correlated with a reduction in NK cell activation by infected cells, and was overcome by antibody-dependent NK cell activation (ADNKA). Depletion of spike-specific antibodies confirmed their dominant role in virus neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other viral proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.

... read more

Topics: Cellular immunity (55%), Downregulation and upregulation (54%), Interferon (53%) ... read more

2 Citations


Open accessJournal ArticleDOI: 10.3390/VACCINES9060596
Nicholas Hanan1, Ronnie L. Doud1, In-Woo Park1, Harlan P. Jones1  +1 moreInstitutions (1)
04 Jun 2021-Vaccine
Abstract: The innate immune system is important for initial antiviral response. SARS-CoV-2 can result in overactivity or suppression of the innate immune system. A dysregulated immune response is associated with poor outcomes; with patients having significant Neutrophil-to-Lymphocyte ratios (NLR) due to neutrophilia alongside lymphopenia. Elevated interleukin (IL)-6 and IL-8 leads to overactivity and is a prominent feature of severe COVID-19 patients. IL-6 can result in lymphopenia; where COVID-19 patients typically have significantly altered lymphocyte subsets. IL-8 attracts neutrophils; which may play a significant role in lung tissue damage with the formation of neutrophil extracellular traps leading to cytokine storm or acute respiratory distress syndrome. Several factors like pre-existing co-morbidities, genetic risks, viral pathogenicity, and therapeutic efficacy act as important modifiers of SARS-CoV-2 risks for disease through an interplay with innate host inflammatory responses. In this review, we discuss the role of the innate immune system at play with other important modifiers in SARS-CoV-2 infection.

... read more

Topics: Innate immune system (59%), Immune system (56%), Cytokine storm (55%) ... read more

1 Citations


Open accessJournal ArticleDOI: 10.1042/BST20201212
Nicolas C. Hoch1Institutions (1)
Abstract: The COVID-19 pandemic has prompted intense research efforts into elucidating mechanisms of coronavirus pathogenesis and to propose antiviral interventions. The interferon (IFN) response is the main antiviral component of human innate immunity and is actively suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication within human cells. Differences in IFN signalling efficiency and timing have emerged as central determinants of the variability of COVID-19 disease severity between patients, highlighting the need for an improved understanding of host-pathogen interactions that affect the IFN response. ADP-ribosylation is an underexplored post-translational modification catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) polymerases (PARPs). Several human PARPs are induced by the IFN response and participate in antiviral defences by regulating IFN signalling itself, modulating host processes such as translation and protein trafficking, as well as directly modifying and inhibiting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosylation and the functions of viral macrodomains, highlighting several open questions in the field.

... read more

Topics: Viral replication (50%)

1 Citations


References
  More

33 results found


Open accessJournal ArticleDOI: 10.1056/NEJMOA2001017
Na Zhu1, Dingyu Zhang, Wenling Wang1, Xingwang Li2  +15 moreInstitutions (3)
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

... read more

Topics: Coronavirus (57%), Betacoronavirus (56%)

15,285 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.02.052
16 Apr 2020-Cell
Abstract: The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.

... read more

Topics: Proteases (52%)

10,193 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.ABB2507
13 Mar 2020-Science
Abstract: The outbreak of a novel coronavirus (2019-nCoV) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure development, we determined a 3.5-angstrom-resolution cryo-electron microscopy structure of the 2019-nCoV S trimer in the prefusion conformation. The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a receptor-accessible conformation. We also provide biophysical and structural evidence that the 2019-nCoV S protein binds angiotensin-converting enzyme 2 (ACE2) with higher affinity than does severe acute respiratory syndrome (SARS)-CoV S. Additionally, we tested several published SARS-CoV RBD-specific monoclonal antibodies and found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs. The structure of 2019-nCoV S should enable the rapid development and evaluation of medical countermeasures to address the ongoing public health crisis.

... read more

5,197 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-020-2196-X
Roman Wölfel1, Victor M. Corman2, Wolfgang Guggemos, M Seilmaier  +15 moreInstitutions (4)
01 Apr 2020-Nature
Abstract: Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity—but also aided in the control—of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6–8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples—in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19. Detailed virological analysis of nine cases of coronavirus disease 2019 (COVID-19) provides proof of active replication of the SARS-CoV-2 virus in tissues of the upper respiratory tract.

... read more

Topics: Virus receptor (62%), Coronavirus (60%), Viral shedding (59%) ... read more

4,325 Citations


Open accessJournal ArticleDOI: 10.1038/S41564-020-0695-Z
Abstract: The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

... read more

Topics: Coronavirus (64%), Nidovirales (50%)

3,790 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202116