scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.

01 Nov 1991-Journal of Experimental Medicine (Rockefeller Univ Press)-Vol. 174, Iss: 5, pp 1209-1220
TL;DR: The results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
Abstract: In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.

Content maybe subject to copyright    Report

Citations
More filters
Journal Article•DOI•
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal Article•DOI•
TL;DR: A major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events.

4,053 citations

Journal Article•DOI•
23 Apr 1993-Science
TL;DR: This regulatory pathway may have evolved to enable innate immune cells, through interactions with microbial pathogens, to direct development of specific immunity toward the appropriate TH1 phenotype.
Abstract: Development of the appropriate CD4+ T helper (TH) subset during an immune response is important for disease resolution. With the use of naive, ovalbumin-specific alpha beta T cell receptor transgenic T cell, it was found that heat-killed Listeria monocytogenes induced TH1 development in vitro through macrophage production of interleukin-12 (IL-12). Moreover, inhibition of macrophage production of IL-12 may explain the ability of IL-10 to suppress TH1 development. Murine immune responses to L. monocytogenes in vivo are of the appropriate TH1 phenotype. Therefore, this regulatory pathway may have evolved to enable innate immune cells, through interactions with microbial pathogens, to direct development of specific immunity toward the appropriate TH phenotype.

3,193 citations

Journal Article•DOI•
TL;DR: The results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages, likely that resolution of inflammation depends not only on the removal of apoptosis but on active suppression of inflammatory mediator production.
Abstract: Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.

2,978 citations

Journal Article•DOI•
TL;DR: Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.
Abstract: Interleukin-10 (IL-10), a cytokine with anti-inflammatory properties, has a central role in infection by limiting the immune response to pathogens and thereby preventing damage to the host. Recently, an increasing interest in how IL10 expression is regulated in different immune cells has revealed some of the molecular mechanisms involved at the levels of signal transduction, epigenetics, transcription factor binding and gene activation. Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.

2,491 citations

References
More filters
Book•
15 Jan 2001
TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Abstract: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential. Molecular Cloning, Fourth Edition, by the celebrated founding author Joe Sambrook and new co-author, the distinguished HHMI investigator Michael Green, preserves the highly praised detail and clarity of previous editions and includes specific chapters and protocols commissioned for the book from expert practitioners at Yale, U Mass, Rockefeller University, Texas Tech, Cold Spring Harbor Laboratory, Washington University, and other leading institutions. The theoretical and historical underpinnings of techniques are prominent features of the presentation throughout, information that does much to help trouble-shoot experimental problems. For the fourth edition of this classic work, the content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories. Core chapters from the third edition have been revised to feature current strategies and approaches to the preparation and cloning of nucleic acids, gene transfer, and expression analysis. They are augmented by 12 new chapters which show how DNA, RNA, and proteins should be prepared, evaluated, and manipulated, and how data generation and analysis can be handled. The new content includes methods for studying interactions between cellular components, such as microarrays, next-generation sequencing technologies, RNA interference, and epigenetic analysis using DNA methylation techniques and chromatin immunoprecipitation. To make sense of the wealth of data produced by these techniques, a bioinformatics chapter describes the use of analytical tools for comparing sequences of genes and proteins and identifying common expression patterns among sets of genes. Building on thirty years of trust, reliability, and authority, the fourth edition of Mol

215,169 citations

Journal Article•DOI•
TL;DR: A technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described, and these "oligolabeled" DNA fragments serve as efficient probes in filter hybridization experiments.

23,324 citations


"Interleukin 10(IL-10) inhibits cyto..." refers methods in this paper

  • ...6% formaldehyde, transferred to Nytran nylon membranes (Schleicher & Schuell, Keene, NH) and hybridized with probes, labeled to high specific activity (>10 s cpm//~g) by the hexamer labeling technique (23)....

    [...]

01 Jan 1984
TL;DR: In this article, a technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described, where DNA fragments are purified from agarose gels directly by ethanol precipitation and are then denatured and labeled with the large fragment of DNA polymerase I, using random oligonucleotides as primers.
Abstract: A technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described. DNA fragments are purified from agarose gels directly by ethanol precipitation and are then denatured and labeled with the large fragment of DNA polymerase I, using random oligonucleotides as primers. Over 70% of the precursor triphosphate is routinely incorporated into complementary DNA, and specific activities of over 10(9) dpm/microgram of DNA can be obtained using relatively small amounts of precursor. These "oligolabeled" DNA fragments serve as efficient probes in filter hybridization experiments.

21,435 citations

Journal Article•DOI•
TL;DR: In this article, the rat pancreas RNA was used as a source for the purification of alpha-amylase messenger ribonucleic acid (RBA) using 2-mercaptoethanol.
Abstract: Intact ribonucleic acid (RNA) has been prepared from tissues rich in ribonuclease such as the rat pancreas by efficient homogenization in a 4 M solution of the potent protein denaturant guanidinium thiocyanate plus 0.1 M 2-mercaptoethanol to break protein disulfide bonds. The RNA was isolated free of protein by ethanol precipitation or by sedimentation through cesium chloride. Rat pancreas RNA obtained by these means has been used as a source for the purification of alpha-amylase messenger ribonucleic acid.

19,805 citations

Journal Article•DOI•
15 Jul 1988-Gene
TL;DR: Plasmid expression vectors have been constructed that direct the synthesis of foreign polypeptides in Escherichia coli as fusions with the C terminus of Sj26, a 26-kDa glutathione S-transferase (GST; EC 2.5.1.18) encoded by the parasitic helminth Schistosoma japonicum.

6,003 citations