scispace - formally typeset
Search or ask a question
Journal Article

Interleukin-13: Central mediator of allergic asthma

01 Jan 1999-Pneumologie (Georg Thieme Verlag)-Vol. 53, Iss: 9
TL;DR: In this article, the type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma.
Abstract: The worldwide incidence, morbidity, and mortality of allergic asthma are increasing. The pathophysiological features of allergic asthma are thought to result from the aberrant expansion of CD4 + T cells producing the type 2 cytokines interleukin-4 (IL-4) and IL-5, although a necessary role for these cytokines in allergic asthma has not been demonstrable. The type 2 cytokine IL-13, which shares a receptor component and signaling pathways with IL-4, was found to be necessary and sufficient for the expression of allergic asthma. IL-13 induces the pathophysiological features of asthma in a manner that is independent of immunoglobulin E and eosinophils. Thus, IL-13 is critical to allergen-induced asthma but operates through mechanisms other than those that are classically implicated in allergic responses.
Citations
More filters
Journal ArticleDOI
TL;DR: Novel evidence is presented that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β).
Abstract: CD4+CD25+ regulatory T cells (Treg) are instrumental in the maintenance of immunological tolerance. One critical question is whether Treg can only be generated in the thymus or can differentiate from peripheral CD4+CD25− naive T cells. In this paper, we present novel evidence that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β). Although transcription factor Foxp3 has been shown recently to be associated with the development of Treg, the physiological inducers for Foxp3 gene expression remain a mystery. TGF-β induced Foxp3 gene expression in TCR-challenged CD4+CD25− naive T cells, which mediated their transition toward a regulatory T cell phenotype with potent immunosuppressive potential. These converted anergic/suppressor cells are not only unresponsive to TCR stimulation and produce neither T helper cell 1 nor T helper cell 2 cytokines but they also express TGF-β and inhibit normal T cell proliferation in vitro. More importantly, in an ovalbumin peptide TCR transgenic adoptive transfer model, TGF-β–converted transgenic CD4+CD25+ suppressor cells proliferated in response to immunization and inhibited antigen-specific naive CD4+ T cell expansion in vivo. Finally, in a murine asthma model, coadministration of these TGF-β–induced suppressor T cells prevented house dust mite–induced allergic pathogenesis in lungs.

4,669 citations

Journal ArticleDOI
TL;DR: Ongoing studies of large-scale, molecularly and genetically focused and extensively clinically characterized cohorts of asthma should enhance the ability to molecularly understand these phenotypes and lead to more targeted and personalized approaches to asthma therapy.
Abstract: Although asthma has been considered as a single disease for years, recent studies have increasingly focused on its heterogeneity. The characterization of this heterogeneity has promoted the concept that asthma consists of multiple phenotypes or consistent groupings of characteristics. Asthma phenotypes were initially focused on combinations of clinical characteristics, but they are now evolving to link biology to phenotype, often through a statistically based process. Ongoing studies of large-scale, molecularly and genetically focused and extensively clinically characterized cohorts of asthma should enhance our ability to molecularly understand these phenotypes and lead to more targeted and personalized approaches to asthma therapy.

1,963 citations

Journal ArticleDOI
TL;DR: Asthma can be divided into at least two distinct molecular phenotypes defined by degree of Th2 inflammation, and Th2 cytokines are likely to be a relevant therapeutic target in only a subset of patients with asthma.
Abstract: Rationale: T-helper type 2 (Th2) inflammation, mediated by IL-4, IL-5, and IL-13, is considered the central molecular mechanism underlying asthma, and Th2 cytokines are emerging therapeutic targets. However, clinical studies increasingly suggest that asthma is heterogeneous.Objectives: To determine whether this clinical heterogeneity reflects heterogeneity in underlying molecular mechanisms related to Th2 inflammation.Methods: Using microarray and polymerase chain reaction analyses of airway epithelial brushings from 42 patients with mild-to-moderate asthma and 28 healthy control subjects, we classified subjects with asthma based on high or low expression of IL-13–inducible genes. We then validated this classification and investigated its clinical implications through analyses of cytokine expression in bronchial biopsies, markers of inflammation and remodeling, responsiveness to inhaled corticosteroids, and reproducibility on repeat examination.Measurements and Main Results: Gene expression analyses ident...

1,566 citations

Journal ArticleDOI
TL;DR: In this article, the immunological mechanisms that initiate, sustain and suppress the fibrotic process were studied. But the mechanisms that are involved in fibrogenesis are now known to be distinct from those involved in inflammation.
Abstract: Tissue fibrosis (scarring) is a leading cause of morbidity and mortality. Current treatments for fibrotic disorders, such as idiopathic pulmonary fibrosis, hepatic fibrosis and systemic sclerosis, target the inflammatory cascade, but they have been widely unsuccessful, largely because the mechanisms that are involved in fibrogenesis are now known to be distinct from those involved in inflammation. Several experimental models have recently been developed to dissect the molecular mechanisms of wound healing and fibrosis. It is hoped that by better understanding the immunological mechanisms that initiate, sustain and suppress the fibrotic process, we will achieve the elusive goal of targeted and effective therapeutics for fibroproliferative diseases.

1,466 citations

References
More filters
Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses.
Abstract: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses. Defining the cellular and molecular mechanisms of helper-T-cell differentiation should lead to rational strategies for manipulating immune responses for prophylaxis and therapy.

4,578 citations

Journal ArticleDOI
TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Abstract: Background. In atopic asthma, activated T helper lymphocytes are present in bronchial-biopsy specimens and bronchoalveolar-lavage (BAL) fluid, and their production of cytokines may be important in the pathogenesis of this disorder. Different patterns of cytokine release are characteristic of certain subgroups of T helper cells, termed TH1 and TH2, the former mediating delayed-type hypersensitivity and the latter mediating IgE synthesis and eosinophilia. The pattern of cytokine production in atopic asthma is unknown. Methods. We assessed cells obtained by BAL in subjects with mild atopic asthma and in normal control subjects for the expression of messenger RNA (mRNA) for interleukin-2, 3, 4, and 5, granulocytemacrophage colony-stimulating factor (GM-CSF), and interferon gamma by in situ hybridization with 32P-labeled complementary RNA. Localization of mRNA to BAL T cells was assessed by simultaneous in situ hybridization and immunofluorescence and by in situ hybridization after immunomagnetic enrichment or...

2,898 citations

Journal ArticleDOI
TL;DR: Eosinophilic inflammation of the airways is correlated with the severity of asthma and these cells are likely to play a part in the epithelial damage seen in this disease.
Abstract: Background and Methods. The importance of eosinophils in the pathogenesis of bronchial asthma is not established. In an attempt to evaluate the role of eosinophilic inflammation in asthma, we compared 10 normal subjects with 43 patients with chronic asthma, 19 of whom had severe disease as assessed by a clinical scoring method described by Aas and by pulmonary-function tests. Eosinophils were counted in peripheral blood and bronchoalveolar-lavage fluid, and in biopsy specimens obtained from the patients and post mortem from 8 subjects without asthma, but not from the 10 normal controls. Eosinophil cationic protein was titrated by radioimmunoassay in the bronchoalveolar-lavage fluid from all subjects and studied by immunohistochemistry in the biopsy specimens. Results. There was a significant increase in the number of peripheral-blood eosinophils in the patients that was correlated with the clinical severity of asthma (P<0.001) and pulmonary function (P<0.03). Levels of eosinophils and eosinophil ...

2,526 citations

Journal ArticleDOI
18 Dec 1998-Science
TL;DR: This article showed that IL-4 receptor α chain-dependent pathway may underlie the genetic associations of asthma with both the human 5q31 locus and the IL4 receptor and showed that selective neutralization of IL-13, a cytokine related to interleukin-4 that also binds to the α chain of the IL 4 receptor, ameliorated asthma phenotype.
Abstract: The pathogenesis of asthma reflects, in part, the activity of T cell cytokines. Murine models support participation of interleukin-4 (IL-4) and the IL-4 receptor in asthma. Selective neutralization of IL-13, a cytokine related to IL-4 that also binds to the α chain of the IL-4 receptor, ameliorated the asthma phenotype, including airway hyperresponsiveness, eosinophil recruitment, and mucus overproduction. Administration of either IL-13 or IL-4 conferred an asthma-like phenotype to nonimmunized T cell–deficient mice by an IL-4 receptor α chain–dependent pathway. This pathway may underlie the genetic associations of asthma with both the human 5q31 locus and the IL-4 receptor.

1,904 citations

Journal ArticleDOI
TL;DR: It is concluded that allergic asthma is accompanied by extensive inflammatory changes in the airways, even in mild clinical and subclinical disease.
Abstract: We have undertaken detailed cellular and ultrastructural examination of bronchial biopsies and bronchial lavage fluid from allergic asthmatic patients in order to determine the nature and degree of the inflammatory processes in mild allergic asthma. Eight atopic asthmatic patients (mean PC20 histamine, 0.90 mg/ml) and four nonasthmatic control subjects underwent fiberoptic bronchoscopy. All asthmatic subjects were clinically stable for 2 wk prior to bronchoscopy and required either no treatment or inhaled albuterol alone. A single 50-ml bronchial wash was undertaken, followed by endobronchial biopsy of subcarinae. These procedures were repeated in the asthmatic subjects 18 h after bronchial provocation with allergen or methacholine. Subsequently, all subjects underwent bronchial reactivity testing with inhaled histamine. The clinical and physiologic data were not revealed to the pathologist interpreting the specimens. The asthmatic subjects shed a significantly greater number of epithelial cells into the ...

1,142 citations