scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interleukin-6 in Schizophrenia-Is There a Therapeutic Relevance?

TL;DR: The IL-6 plays significant role in disease genesis and progression, so the use of specific inhibitors may not only be beneficial for exacerbation and alleviation of positive symptoms, but may attenuate cognitive impairment in patients with schizophrenia.
Abstract: Renewing interest in immune aspects of schizophrenia and new findings about the brain-fat axis encourage us to discuss the possible role of interleukin-6 (IL-6) in schizophrenia. Previously, it was suggested that a primary alteration of the innate immune system may be relevant in schizophrenia. Functional dichotomy of IL-6 suggests that this chemical messenger may be responsible for regulating the balance between pro- and anti-inflammatory responses, with tissue-specific properties at the periphery and in the central nervous system. Specific phase of this chronic and deteriorating disorder must be considered, which can involve IL-6 in acute or possible chronic inflammation and/or autoimmunity. We give an overview of IL-6 role in the onset and progression of this disorder, also considering cognitive impairment and metabolic changes in patients with schizophrenia. Data suggest that decreased serum level of IL-6 following antipsychotic therapy could be predisposing factor for the development of obesity and obesity-related metabolic disorders in schizophrenia. As we reviewed, the IL-6 plays significant role in disease genesis and progression, so the use of specific inhibitors may not only be beneficial for exacerbation and alleviation of positive symptoms, but may attenuate cognitive impairment in patients with schizophrenia.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: UF led to higher protein, lipid, cytokine and exosomes yields compared with UC, and a secretome dosage was identified to obtain the same immunomodulatory activity of MSCs, paving the way for cell-free therapy.

82 citations

Dissertation
26 Oct 2018

64 citations


Cites background from "Interleukin-6 in Schizophrenia-Is T..."

  • ...In addition, this CK induces the synthesis of C-reactive protein (CRP), serum amyloid A, and fibrinogen, as acute phase proteins (Borovcanin et al. 2017)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors provide an integrated account of how interleukin 6 (IL-6) may contribute to the development of depression and suggest that IL-6 levels, both within the periphery and the brain, most probably contribute to depression symptomatology in numerous ways.
Abstract: Many patients with major depressive disorder (MDD) are reported to have higher levels of multiple inflammatory cytokines including interleukin 6 (IL-6). Recent studies both pre-clinical and clinical have advocated for the functional role of IL-6 in development of MDD and suggested a great potential for targeting this cytokine to open new avenues in pharmacotherapy of depression. The purpose of the present narrative review was to provide an integrated account of how IL-6 may contribute to development of depression. All peer-reviewed journal articles published before July 2020 for each area discussed were searched by WOS, PubMed, MEDLINE, Scopus, Google Scholar, for original research, review articles, and book chapters. Publications between 1980 and July 2020 were included. Alterations in IL-6 levels, both within the periphery and the brain, most probably contribute to depression symptomatology in numerous ways. As IL-6 acts on multiple differing target tissues throughout the body, dysregulation of this particular cytokine can precipitate a multitude of events relevant to depression and blocking its effects can prevent further escalation of inflammatory responses, and potentially pave the way for opening new avenues in diagnosis, treatment, and prevention of this debilitating disorder.

50 citations

Journal ArticleDOI
28 May 2021-Cytokine
TL;DR: The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials as mentioned in this paper, which can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neuropathic disorders.

35 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a systematic review and meta-analysis of studies comparing peripheral blood levels of C-reactive protein (CRP) and cytokines between individuals at risk of psychosis and controls.

29 citations

References
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations


"Interleukin-6 in Schizophrenia-Is T..." refers background in this paper

  • ...Proc Natl Acad Sci U S A (1992) 89(21):10440–3....

    [...]

  • ...Thus, in the presence of the transforming growth factor-beta (TGF-β), IL-6 is a necessary signal for differentiation of naive T cells to Th17 cells, a subset of T helper cells that are implicated in the induction of autoimmune diseases (21, 22), and contribute to local tissue damage in chronic inflammatory diseases (23)....

    [...]

Journal ArticleDOI
TL;DR: Diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.
Abstract: Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

4,046 citations


"Interleukin-6 in Schizophrenia-Is T..." refers background in this paper

  • ...On the other hand, Treg cells, Th2 lymphocytes, and alternatively activated macrophages exert protective role in nutrient excessinduced inflammation (74, 75)....

    [...]

Journal ArticleDOI
11 May 2006-Nature
TL;DR: This article identified transforming growth factor-beta (TGF-beta) as a cytokine critical for commitment to Thelper-17 (T(H)17) development, which is required for host protection against a bacterial pathogen, Citrobacter rodentium.
Abstract: A new lineage of effector CD4+ T cells characterized by production of interleukin (IL)-17, the T-helper-17 (T(H)17) lineage, was recently described based on developmental and functional features distinct from those of classical T(H)1 and T(H)2 lineages. Like T(H)1 and T(H)2, T(H)17 cells almost certainly evolved to provide adaptive immunity tailored to specific classes of pathogens, such as extracellular bacteria. Aberrant T(H)17 responses have been implicated in a growing list of autoimmune disorders. T(H)17 development has been linked to IL-23, an IL-12 cytokine family member that shares with IL-12 a common subunit, IL-12p40 (ref. 8). The IL-23 and IL-12 receptors also share a subunit, IL-12Rbeta1, that pairs with unique, inducible components, IL-23R and IL-12Rbeta2, to confer receptor responsiveness. Here we identify transforming growth factor-beta (TGF-beta) as a cytokine critical for commitment to T(H)17 development. TGF-beta acts to upregulate IL-23R expression, thereby conferring responsiveness to IL-23. Although dispensable for the development of IL-17-producing T cells in vitro and in vivo, IL-23 is required for host protection against a bacterial pathogen, Citrobacter rodentium. The action of TGF-beta on naive T cells is antagonized by interferon-gamma and IL-4, thus providing a mechanism for divergence of the T(H)1, T(H)2 and T(H)17 lineages.

2,945 citations

Journal ArticleDOI
TL;DR: Preliminary results from clinical trials with salicylates and interleukin-1 antagonists support the notion that inflammation participates in the pathogenesis of type 2 diabetes and have opened the door for immunomodulatory strategies for the treatment of T2D that simultaneously lower blood glucose levels and potentially reduce the severity and prevalence of the associated complications of this disease.
Abstract: Components of the immune system are altered in obesity and type 2 diabetes (T2D), with the most apparent changes occurring in adipose tissue, the liver, pancreatic islets, the vasculature and circulating leukocytes. These immunological changes include altered levels of specific cytokines and chemokines, changes in the number and activation state of various leukocyte populations and increased apoptosis and tissue fibrosis. Together, these changes suggest that inflammation participates in the pathogenesis of T2D. Preliminary results from clinical trials with salicylates and interleukin-1 antagonists support this notion and have opened the door for immunomodulatory strategies for the treatment of T2D that simultaneously lower blood glucose levels and potentially reduce the severity and prevalence of the associated complications of this disease.

2,845 citations