scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Intermolecular dehydrogenative Heck reactions.

09 Mar 2011-Chemical Reviews (American Chemical Society)-Vol. 111, Iss: 3, pp 1170-1214
About: This article is published in Chemical Reviews.The article was published on 2011-03-09. It has received 881 citations till now. The article focuses on the topics: Intermolecular force.
Citations
More filters
Journal ArticleDOI
TL;DR: This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts.
Abstract: The direct functionalization of heterocyclic compounds has emerged as one of the most important topics in the field of metal-catalyzed C–H bond activation due to the fact that products are an important synthetic motif in organic synthesis, the pharmaceutical industry, and materials science. This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts (113 references).

2,062 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in the emerging field of non-chelate-assisted C-H activation are discussed, highlighting some of the most intriguing and inspiring examples of induction of reactivity and selectivity.
Abstract: The use of coordinating moieties as directing groups for the functionalization of aromatic CH bonds has become an established tool to enhance reactivity and induce regioselectivity. Nevertheless, with regard to the synthetic applicability of CH activation, there is a growing interest in transformations in which the directing group can be fully abandoned, thus allowing the direct functionalization of simple benzene derivatives. However, this approach requires the disclosure of new strategies to achieve reactivity and to control selectivity. In this review, recent advances in the emerging field of non-chelate-assisted CH activation are discussed, highlighting some of the most intriguing and inspiring examples of induction of reactivity and selectivity.

1,419 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018 is provided.
Abstract: C–H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C–H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C–H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C–H activation until summer 2018.

1,417 citations

Journal ArticleDOI
TL;DR: In this article, a number of selectivity trends have emerged for both sp2 and sp3 C-H functionalization reactions that hold true for a variety of transformations involving diverse directing groups.
Abstract: Effective methodology to functionalize C–H bonds requires overcoming the key challenge of differentiating among the multitude of C–H bonds that are present in complex organic molecules. This Account focuses on our work over the past decade toward the development of site-selective Pd-catalyzed C–H functionalization reactions using the following approaches: substrate-based control over selectivity through the use of directing groups (approach 1), substrate control through the use of electronically activated substrates (approach 2), or catalyst-based control (approach 3). In our extensive exploration of the first approach, a number of selectivity trends have emerged for both sp2 and sp3 C–H functionalization reactions that hold true for a variety of transformations involving diverse directing groups. Functionalizations tend to occur at the less-hindered sp2 C–H bond ortho to a directing group, at primary sp3 C–H bonds that are β to a directing group, and, when multiple directing groups are present, at C–H si...

1,165 citations

Journal ArticleDOI
TL;DR: This critical review introduces the recent advances over the past 5 years in transition-metal catalyzed reactions using molecular oxygen as the oxidant and highlights the scope and limitations of these oxidation reactions.
Abstract: For green and sustainable chemistry, molecular oxygen is considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characteristics, and therefore offers attractive academic and industrial prospects. This critical review introduces the recent advances over the past 5 years in transition-metal catalyzed reactions using molecular oxygen as the oxidant. This review highlights the scope and limitations, as well as the mechanisms of these oxidation reactions (184 references).

1,022 citations

References
More filters
Journal ArticleDOI
TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Abstract: 1.1 Introduction to Pd-catalyzed directed C–H functionalization The development of methods for the direct conversion of carbon–hydrogen bonds into carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon bonds remains a critical challenge in organic chemistry. Mild and selective transformations of this type will undoubtedly find widespread application across the chemical field, including in the synthesis of pharmaceuticals, natural products, agrochemicals, polymers, and feedstock commodity chemicals. Traditional approaches for the formation of such functional groups rely on pre-functionalized starting materials for both reactivity and selectivity. However, the requirement for installing a functional group prior to the desired C–O, C–X, C–N, C–S, or C–C bond adds costly chemical steps to the overall construction of a molecule. As such, circumventing this issue will not only improve atom economy but also increase the overall efficiency of multi-step synthetic sequences. Direct C–H bond functionalization reactions are limited by two fundamental challenges: (i) the inert nature of most carbon-hydrogen bonds and (ii) the requirement to control site selectivity in molecules that contain diverse C–H groups. A multitude of studies have addressed the first challenge by demonstrating that transition metals can react with C–H bonds to produce C–M bonds in a process known as “C–H activation”.1 The resulting C–M bonds are far more reactive than their C–H counterparts, and in many cases they can be converted to new functional groups under mild conditions. The second major challenge is achieving selective functionalization of a single C–H bond within a complex molecule. While several different strategies have been employed to address this issue, the most common (and the subject of the current review) involves the use of substrates that contain coordinating ligands. These ligands (often termed “directing groups”) bind to the metal center and selectively deliver the catalyst to a proximal C–H bond. Many different transition metals, including Ru, Rh, Pt, and Pd, undergo stoichiometric ligand-directed C–H activation reactions (also known as cyclometalation).2,3 Furthermore, over the past 15 years, a variety of catalytic carbon-carbon bond-forming processes have been developed that involve cyclometalation as a key step.1b–d,4 The current review will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium. Palladium complexes are particularly attractive catalysts for such transformations for several reasons. First, ligand-directed C–H functionalization at Pd centers can be used to install many different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Few other catalysts allow such diverse bond constructions,5,6,7 and this versatility is predominantly the result of two key features: (i) the compatibility of many PdII catalysts with oxidants and (ii) the ability to selectively functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups, and, unlike many other transition metals, promotes C–H activation at both sp2 and sp3 C–H sites. Finally, the vast majority of Pd-catalyzed directed C–H functionalization reactions can be performed in the presence of ambient air and moisture, making them exceptionally practical for applications in organic synthesis. While several accounts have described recent advances, this is the first comprehensive review encompassing the large body of work in this field over the past 5 years (2004–2009). Both synthetic applications and mechanistic aspects of these transformations are discussed where appropriate, and the review is organized on the basis of the type of bond being formed.

5,179 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to make organic preparations.
Abstract: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to

3,373 citations

Journal ArticleDOI
TL;DR: A number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, but the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps.
Abstract: The biaryl structural motif is a predominant feature in many pharmaceutically relevant and biologically active compounds. As a result, for over a century 1 organic chemists have sought to develop new and more efficient aryl -aryl bond-forming methods. Although there exist a variety of routes for the construction of aryl -aryl bonds, arguably the most common method is through the use of transition-metalmediated reactions. 2-4 While earlier reports focused on the use of stoichiometric quantities of a transition metal to carry out the desired transformation, modern methods of transitionmetal-catalyzed aryl -aryl coupling have focused on the development of high-yielding reactions achieved with excellent selectivity and high functional group tolerance under mild reaction conditions. Typically, these reactions involve either the coupling of an aryl halide or pseudohalide with an organometallic reagent (Scheme 1), or the homocoupling of two aryl halides or two organometallic reagents. Although a number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps. In particular, the obligation to use coupling partners that are both activated is wasteful since it necessitates the installation and then subsequent disposal of stoichiometric activating agents. Furthermore, preparation of preactivated aryl substrates often requires several steps, which in itself can be a time-consuming and economically inefficient process.

3,204 citations

Journal ArticleDOI
TL;DR: The ability of transition metal complexes to preorganize π-electron systems serves as the basis both of simple additions usually accompanied by subsequent hydrogen shifts and of cycloadditions as mentioned in this paper.
Abstract: Enhancing the efficiency of the synthesis of complex organic products constitutes one of the most exciting challenges to the synthetic chemist. Increasing the catalogue of reactions that are simple additions or that minimize waste production is the necessary first step. Transition metal complexes, which can be tunable both electronically and sterically by varying the metal and/or ligands, are a focal point for such invention. Except for catalytic hydrogenation, such methods have been rare in complex synthesis and virtually unknown for CC bond formation until the advent of cross-coupling reactions. These complexes may orchestrate a variety of CC bond-forming processes, important for creation of the basic skeleton of the organic structure. Their ability to insert into CH bonds primes a number of different types of additions to relatively nonpolar π-electron systems. Besides imparting selectivity, they make feasible reactions that uncatalyzed were previously unknown. The ability of these complexes to preorganize π-electron systems serves as the basis both of simple additions usually accompanied by subsequent hydrogen shifts and of cycloadditions. The ability to generate “reactive” intermediates under mild conditions also provides prospects for new types of CC bond-forming reactions. While the examples reveal a diverse array of successes, the opportunities for new invention are vast and largely untapped.

2,223 citations