scispace - formally typeset
Search or ask a question
Journal Article

Internet of Things for Smart Cities

TL;DR: This paper focuses specifically to an urban IoT systems that, while still being quite a broad category, are characterized by their specific application domain and are designed to support the Smart City vision.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper we focus specifically to an urban IoT systems that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens.
Citations
More filters
Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations


Cites background from "Internet of Things for Smart Cities..."

  • ...Smart cities can use public resources in more efficient ways, resulting in the improvement of the QoSs provided to users and the reduction of operational costs to public administrators [53], [155]....

    [...]

  • ...which aims to manage public affairs via introducing information and communication technology (ICT) solutions [155]....

    [...]

  • ...smart cities [14], [155], if a generalized network infrastructure can be implemented and is able to cover all regions in a city, applications (smart grid, smart transportation, smart health-...

    [...]

  • ...Smart cities, as a complex CPS/IoT application, may consist of several subapplications or services [84], [155], including the smart gird, smart transportation, the structural health...

    [...]

Posted Content
TL;DR: This tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems on the basis of 3D deployment, performance analysis, channel modeling, and energy efficiency.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as three-dimensional deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,071 citations


Cites background from "Internet of Things for Smart Cities..."

  • ...management [24], [79]–[81] requires effective wireless connectivity among a massive number of IoT devices that must reliably deliver their data, typically at high data rates or ultra...

    [...]

  • ...Wireless Cellular Networks: The need for high-speed wireless access has been incessantly growing, fueled by the rapid proliferation of highly capable mobile devices such as smartphones, tablets, and more recently drone-UEs and IoT-style gadgets [24]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traffic growth for enabling the IoT.
Abstract: The Internet of Things (IoT) is a promising technology which tends to revolutionize and connect the global world via heterogeneous smart devices through seamless connectivity. The current demand for machine-type communications (MTC) has resulted in a variety of communication technologies with diverse service requirements to achieve the modern IoT vision. More recent cellular standards like long-term evolution (LTE) have been introduced for mobile devices but are not well suited for low-power and low data rate devices such as the IoT devices. To address this, there is a number of emerging IoT standards. Fifth generation (5G) mobile network, in particular, aims to address the limitations of previous cellular standards and be a potential key enabler for future IoT. In this paper, the state-of-the-art of the IoT application requirements along with their associated communication technologies are surveyed. In addition, the third generation partnership project cellular-based low-power wide area solutions to support and enable the new service requirements for Massive to Critical IoT use cases are discussed in detail, including extended coverage global system for mobile communications for the Internet of Things, enhanced machine-type communications, and narrowband-Internet of Things. Furthermore, 5G new radio enhancements for new service requirements and enabling technologies for the IoT are introduced. This paper presents a comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traffic growth for enabling the IoT. The challenges and open research directions pertinent to the deployment of massive to critical IoT applications are also presented in coming up with an efficient context-aware congestion control mechanism.

951 citations

Journal ArticleDOI
TL;DR: The IoT ecosystem is presented and how the combination of IoT and DA is enabling smart agriculture, and future trends and opportunities are provided which are categorized into technological innovations, application scenarios, business, and marketability.
Abstract: The surge in global population is compelling a shift toward smart agriculture practices. This coupled with the diminishing natural resources, limited availability of arable land, increase in unpredictable weather conditions makes food security a major concern for most countries. As a result, the use of Internet of Things (IoT) and data analytics (DA) are employed to enhance the operational efficiency and productivity in the agriculture sector. There is a paradigm shift from use of wireless sensor network (WSN) as a major driver of smart agriculture to the use of IoT and DA. The IoT integrates several existing technologies, such as WSN, radio frequency identification, cloud computing, middleware systems, and end-user applications. In this paper, several benefits and challenges of IoT have been identified. We present the IoT ecosystem and how the combination of IoT and DA is enabling smart agriculture. Furthermore, we provide future trends and opportunities which are categorized into technological innovations, application scenarios, business, and marketability.

814 citations


Cites background from "Internet of Things for Smart Cities..."

  • ...THE INTERNET of Things (IoT) has found its application in several areas, such as connected industry, smartcity [1], [2], smart-home [3] smart-energy, connected car [4], smart-agriculture [5], connected building and campus [6], health care [7], logistics [8], among other domains....

    [...]

Posted Content
TL;DR: In this paper, the authors introduce a new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications.
Abstract: Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications.

748 citations

References
More filters
Journal ArticleDOI
TL;DR: The definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed and the major challenges which need addressing by the research community and corresponding potential solutions are investigated.
Abstract: In recent year, the Internet of Things (IoT) has drawn significant research attention. IoT is considered as a part of the Internet of the future and will comprise billions of intelligent communicating `things'. The future of the Internet will consist of heterogeneously connected devices that will further extend the borders of the world with physical entities and virtual components. The Internet of Things (IoT) will empower the connected things with new capabilities. In this survey, the definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed. Firstly, various definitions of IoT are introduced; secondly, emerging techniques for the implementation of IoT are discussed; thirdly, some open issues related to the IoT applications are explored; finally, the major challenges which need addressing by the research community and corresponding potential solutions are investigated.

5,295 citations

Journal ArticleDOI
TL;DR: The fields of application for IoT technologies are as numerous as they are diverse, as IoT solutions are increasingly extending to virtually all areas of everyday.
Abstract: It has been next to impossible in the past months not to come across the term ‘‘Internet of Things’’ (IoT) one way or another. Especially the past year has seen a tremendous surge of interest in the Internet of Things. Consortia have been formed to define frameworks and standards for the IoT. Companies have started to introduce numerous IoTbased products and services. And a number of IoT-related acquisitions have been making the headlines, including, e.g., the prominent takeover of Nest by Google for $3.2 billion and the subsequent acquisitions of Dropcam by Nest and of SmartThings by Samsung. Politicians as well as practitioners increasingly acknowledge the Internet of Things as a real business opportunity, and estimates currently suggest that the IoT could grow into a market worth $7.1 trillion by 2020 (IDC 2014). While the term Internet of Things is now more and more broadly used, there is no common definition or understanding today of what the IoT actually encompasses. The origins of the term date back more than 15 years and have been attributed to the work of the Auto-ID Labs at the Massachusetts Institute of Technology (MIT) on networked radio-frequency identification (RFID) infrastructures (Atzori et al. 2010; Mattern and Floerkemeier 2010). Since then, visions for the Internet of Things have been further developed and extended beyond the scope of RFID technologies. The International Telecommunication Union (ITU) for instance now defines the Internet of Things as ‘‘a global infrastructure for the Information Society, enabling advanced services by interconnecting (physical and virtual) things based on, existing and evolving, interoperable information and communication technologies’’ (ITU 2012). At the same time, a multitude of alternative definitions has been proposed. Some of these definitions exhibit an emphasis on the things which become connected in the IoT. Other definitions focus on Internet-related aspects of the IoT, such as Internet protocols and network technology. And a third type centers on semantic challenges in the IoT relating to, e.g., the storage, search and organization of large volumes of information (Atzori et al. 2010). The fields of application for IoT technologies are as numerous as they are diverse, as IoT solutions are increasingly extending to virtually all areas of everyday. The most prominent areas of application include, e.g., the smart industry, where the development of intelligent production systems and connected production sites is often discussed under the heading of Industry 4.0. In the smart home or building area, intelligent thermostats and security systems are receiving a lot of attention, while smart energy applications focus on smart electricity, gas and water meters. Smart transport solutions include, e.g., vehicle fleet tracking and mobile ticketing, while in the smart health area, topics such as patients’ surveillance and chronic disease management are being addressed. And in the context of Accepted after one revision by Prof. Dr. Sinz.

3,499 citations

Book ChapterDOI
TL;DR: An analysis of the current landscape of smart city pilot programmes, Future Internet experimentally-driven research and projects in the domain of Living Labs, common resources regarding research and innovation can be identified that can be shared in open innovation environments.
Abstract: Cities nowadays face complex challenges to meet objectives regarding socio-economic development and quality of life. The concept of "smart cities" is a response to these challenges. This paper explores "smart cities" as environments of open and user-driven innovation for experimenting and validating Future Internet-enabled services. Based on an analysis of the current landscape of smart city pilot programmes, Future Internet experimentally-driven research and projects in the domain of Living Labs, common resources regarding research and innovation can be identified that can be shared in open innovation environments. Effectively sharing these common resources for the purpose of establishing urban and regional innovation ecosystems requires sustainable partnerships and cooperation strategies among the main stakeholders.

1,007 citations

Journal ArticleDOI
TL;DR: This paper proposes an original solution to integrate and opportunistically exploit MANET overlays, impromptu, and collaboratively formed over WSNs, to boost urban data harvesting in IoT.
Abstract: Ubiquitous smart environments, equipped with low-cost and easy-deployable wireless sensor networks (WSNs) and widespread mobile ad hoc networks (MANETs), are opening brand new opportunities in wide-scale urban monitoring. Indeed, MANET and WSN convergence paves the way for the development of brand new Internet of Things (IoT) communication platforms with a high potential for a wide range of applications in different domains. Urban data collection, i.e., the harvesting of monitoring data sensed by a large number of collaborating sensors, is a challenging task because of many open technical issues, from typical WSN limitations (bandwidth, energy, delivery time, etc.) to the lack of widespread WSN data collection standards, needed for practical deployment in existing and upcoming IoT scenarios. In particular, effective collection is crucial for classes of smart city services that require a timely delivery of urgent data such as environmental monitoring, homeland security, and city surveillance. After surveying the existing WSN interoperability efforts for urban sensing, this paper proposes an original solution to integrate and opportunistically exploit MANET overlays, impromptu, and collaboratively formed over WSNs, to boost urban data harvesting in IoT. Overlays are used to dynamically differentiate and fasten the delivery of urgent sensed data over low-latency MANET paths by integrating with latest emergent standards/specifications for WSN data collection. The reported experimental results show the feasibility and effectiveness (e.g., limited coordination overhead) of the proposed solution.

386 citations

Journal ArticleDOI
TL;DR: Embedded networked sensing, having successfully shifted from the lab to the environment, is primed for a more contentious move to the city to where citizens will likely be the target of data collection.
Abstract: Embedded networked sensing, having successfully shifted from the lab to the environment, is primed for a more contentious move to the city to where citizens will likely be the target of data collection. This transition will warrant careful study and touch on issues that go far beyond the scientific realm.

299 citations