scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Internet of Things in Industries: A Survey

TL;DR: This review paper summarizes the current state-of-the-art IoT in industries systematically and identifies research trends and challenges.
Abstract: Internet of Things (IoT) has provided a promising opportunity to build powerful industrial systems and applications by leveraging the growing ubiquity of radio-frequency identification (RFID), and wireless, mobile, and sensor devices. A wide range of industrial IoT applications have been developed and deployed in recent years. In an effort to understand the development of IoT in industries, this paper reviews the current research of IoT, key enabling technologies, major IoT applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art IoT in industries systematically.
Citations
More filters
Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations


Cites background or methods from "Internet of Things in Industries: A..."

  • ...Finally, a common set of services should be provisioned [10], [136]....

    [...]

  • ...In addition, the interface should efficiently manage the interconnected devices, including device connection, device disconnection, device communication, and device operation [136]....

    [...]

  • ...Thus, the service can be divided into two categories in IoT: 1) primary service and 2) secondary service [136]....

    [...]

  • ...To achieve an efficient IFP, universal plug and play should be implemented [36], [45], [136]....

    [...]

  • ...As the development of SoA-IoT, service provisioning process has the functionality of providing interactions with applications and services [136], [166]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review on Industry 4.0 is conducted and presents an overview of the content, scope, and findings by examining the existing literatures in all of the databases within the Web of Science.

1,906 citations

Journal ArticleDOI
TL;DR: The state of the art in the area of Industry 4.0 as it relates to industries is surveyed, with a focus on China's Made-in-China 2025 and formal methods and systems methods crucial for realising Industry 5.0.
Abstract: Rapid advances in industrialisation and informatisation methods have spurred tremendous progress in developing the next generation of manufacturing technology. Today, we are on the cusp of the Fourth Industrial Revolution. In 2013, amongst one of 10 ‘Future Projects’ identified by the German government as part of its High-Tech Strategy 2020 Action Plan, the Industry 4.0 project is considered to be a major endeavour for Germany to establish itself as a leader of integrated industry. In 2014, China’s State Council unveiled their ten-year national plan, Made-in-China 2025, which was designed to transform China from the world’s workshop into a world manufacturing power. Made-in-China 2025 is an initiative to comprehensively upgrade China’s industry including the manufacturing sector. In Industry 4.0 and Made-in-China 2025, many applications require a combination of recently emerging new technologies, which is giving rise to the emergence of Industry 4.0. Such technologies originate from different disciplines ...

1,780 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)-enabled manufacturing, and cloud manufacturing and describes worldwide movements in intelligent manufacturing.

1,602 citations

Journal ArticleDOI
Fei Tao1, Jiangfeng Cheng1, Qinglin Qi1, Meng Zhang1, He Zhang1, Fangyuan Sui1 
TL;DR: In this paper, a new method for product design, manufacturing, and service driven by digital twin is proposed, and three cases are given to illustrate the future applications of digital twin in three phases of a product respectively.
Abstract: Nowadays, along with the application of new-generation information technologies in industry and manufacturing, the big data-driven manufacturing era is coming. However, although various big data in the entire product lifecycle, including product design, manufacturing, and service, can be obtained, it can be found that the current research on product lifecycle data mainly focuses on physical products rather than virtual models. Besides, due to the lack of convergence between product physical and virtual space, the data in product lifecycle is isolated, fragmented, and stagnant, which is useless for manufacturing enterprises. These problems lead to low level of efficiency, intelligence, sustainability in product design, manufacturing, and service phases. However, physical product data, virtual product data, and connected data that tie physical and virtual product are needed to support product design, manufacturing, and service. Therefore, how to generate and use converged cyber-physical data to better serve product lifecycle, so as to drive product design, manufacturing, and service to be more efficient, smart, and sustainable, is emphasized and investigated based on our previous study on big data in product lifecycle management. In this paper, a new method for product design, manufacturing, and service driven by digital twin is proposed. The detailed application methods and frameworks of digital twin-driven product design, manufacturing, and service are investigated. Furthermore, three cases are given to illustrate the future applications of digital twin in the three phases of a product respectively.

1,571 citations


Cites background from "Internet of Things in Industries: A..."

  • ..., internet of things technology and devices are employed to collect various data generated in the entire produce lifecycle [2], cloud technology is used to realize the data management and processing [3], and artificial intelligence is used for data mining and realizing added-value [4], the big data-driven manufacturing era is coming....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.

12,539 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations


"Internet of Things in Industries: A..." refers background in this paper

  • ...Future IoT systems should have characteristics including “self-configuration, self-optimization, self-protection, and selfhealing” [81], [82]....

    [...]

Journal ArticleDOI
TL;DR: The definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed and the major challenges which need addressing by the research community and corresponding potential solutions are investigated.
Abstract: In recent year, the Internet of Things (IoT) has drawn significant research attention. IoT is considered as a part of the Internet of the future and will comprise billions of intelligent communicating `things'. The future of the Internet will consist of heterogeneously connected devices that will further extend the borders of the world with physical entities and virtual components. The Internet of Things (IoT) will empower the connected things with new capabilities. In this survey, the definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed. Firstly, various definitions of IoT are introduced; secondly, emerging techniques for the implementation of IoT are discussed; thirdly, some open issues related to the IoT applications are explored; finally, the major challenges which need addressing by the research community and corresponding potential solutions are investigated.

5,295 citations


"Internet of Things in Industries: A..." refers background or methods in this paper

  • ...The services on the service layer run directly on limited network infrastructures in order to effectively find new services for an application, as they connect to the network....

    [...]

  • ...RFID has been widely used in logistics, pharmaceutical production, retailing, and supply chain management, since 1980s [7], [8]....

    [...]

  • ...However, the recent research results on SOA-IoT reported [41] that service provisioning process (SPP) can also effectively provide interaction between applications and services....

    [...]

  • ...…layer in IoT, designers need to address issues such as network management technologies for heterogonous networks (such as fixed, wireless, mobile, etc.), energy efficiency in networks, QoS requirements, service discovery and retrieval, data and signal processing, security, and privacy [38]....

    [...]

  • ...Jia et al. [6] and Domingo [33] propose to divide the IoT system architecture into three major layers: perception layer, network layer, and service layer (or application layer)....

    [...]

Journal ArticleDOI
TL;DR: The fields of application for IoT technologies are as numerous as they are diverse, as IoT solutions are increasingly extending to virtually all areas of everyday.
Abstract: It has been next to impossible in the past months not to come across the term ‘‘Internet of Things’’ (IoT) one way or another. Especially the past year has seen a tremendous surge of interest in the Internet of Things. Consortia have been formed to define frameworks and standards for the IoT. Companies have started to introduce numerous IoTbased products and services. And a number of IoT-related acquisitions have been making the headlines, including, e.g., the prominent takeover of Nest by Google for $3.2 billion and the subsequent acquisitions of Dropcam by Nest and of SmartThings by Samsung. Politicians as well as practitioners increasingly acknowledge the Internet of Things as a real business opportunity, and estimates currently suggest that the IoT could grow into a market worth $7.1 trillion by 2020 (IDC 2014). While the term Internet of Things is now more and more broadly used, there is no common definition or understanding today of what the IoT actually encompasses. The origins of the term date back more than 15 years and have been attributed to the work of the Auto-ID Labs at the Massachusetts Institute of Technology (MIT) on networked radio-frequency identification (RFID) infrastructures (Atzori et al. 2010; Mattern and Floerkemeier 2010). Since then, visions for the Internet of Things have been further developed and extended beyond the scope of RFID technologies. The International Telecommunication Union (ITU) for instance now defines the Internet of Things as ‘‘a global infrastructure for the Information Society, enabling advanced services by interconnecting (physical and virtual) things based on, existing and evolving, interoperable information and communication technologies’’ (ITU 2012). At the same time, a multitude of alternative definitions has been proposed. Some of these definitions exhibit an emphasis on the things which become connected in the IoT. Other definitions focus on Internet-related aspects of the IoT, such as Internet protocols and network technology. And a third type centers on semantic challenges in the IoT relating to, e.g., the storage, search and organization of large volumes of information (Atzori et al. 2010). The fields of application for IoT technologies are as numerous as they are diverse, as IoT solutions are increasingly extending to virtually all areas of everyday. The most prominent areas of application include, e.g., the smart industry, where the development of intelligent production systems and connected production sites is often discussed under the heading of Industry 4.0. In the smart home or building area, intelligent thermostats and security systems are receiving a lot of attention, while smart energy applications focus on smart electricity, gas and water meters. Smart transport solutions include, e.g., vehicle fleet tracking and mobile ticketing, while in the smart health area, topics such as patients’ surveillance and chronic disease management are being addressed. And in the context of Accepted after one revision by Prof. Dr. Sinz.

3,499 citations


"Internet of Things in Industries: A..." refers background in this paper

  • ...uk) around us can be associated to the Internet and allow these objects and devices to cooperate and communicate with one another to reach common goals [3]....

    [...]

  • ...IoT would also greatly benefit by leveraging existing Internet protocols such as IPv6, as this would make it possible to directly address any number of things needed through the Internet [3, 19,20]....

    [...]

  • ...A new paradigm, named Social Internet of Things (SIoT), was recently proposed by Atzori et al. [42]....

    [...]

  • ...IoT would also greatly benefit by leveraging existing Internet protocols such as IPv6, as this would make it possible to directly address any number of things needed through the Internet [3], [19], [20]....

    [...]

  • ...3) Developing Context-Aware IoT Middleware Solutions: When billions of sensors are connected to the Internet, it is not feasible for people to process all the data collected by those sensors....

    [...]