scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Interstellar bubbles. II - Structure and evolution

01 Dec 1977-The Astrophysical Journal-Vol. 218, pp 377-395
TL;DR: In this article, the detailed structure of the interaction of a strong stellar wind with the interstellar medium is presented, including the effects of thermal conduction between the hot interior and the cold shell of swept-up interstellar matter.
Abstract: The detailed structure of the interaction of a strong stellar wind with the interstellar medium is presented. First, an adiabatic similarity solution is given which is applicable at early times. Second, a similarity solution is derived which includes the effects of thermal conduction between the hot (about 1 million K) interior and the cold shell of swept-up interstellar matter. This solution is then modified to include the effects of radiative energy losses. The evolution of an interstellar bubble is calculated, including the radiative losses. The quantitative results for the outer-shell radius and velocity and the column density of highly ionized species such as O VI are within a factor 2 of the approximate results of Castor, McCray, and Weaver (1975). The effect of stellar motion on the structure of a bubble, the hydrodynamic stability of the outer shell, and the observable properties of the hot region and the outer shell are discussed.
Citations
More filters
Journal ArticleDOI
20 Apr 2005
TL;DR: Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium New observations are revealing the ubiquity of this process, particularly at high redshift as discussed by the authors.
Abstract: Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and are deposited into the intergalactic medium New observations are revealing the ubiquity of this process, particularly at high redshift We describe the physics behind these winds, discuss the observational evidence for them in nearby star-forming and active galaxies and in the high-redshift universe, and consider the implications of energetic winds for the formation and evolution of galaxies and the intergalactic medium To inspire future research, we conclude with a set of observational and theoretical challenges

1,453 citations

Book
09 Jan 2011
TL;DR: In this paper, a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium is presented, including the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves.
Abstract: This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. * Essential textbook on the physics of the interstellar and intergalactic medium * Based on a course taught by the author for more than twenty years at Princeton University * Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more * Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium * Reviews diagnostics using emission and absorption lines * Features color illustrations and detailed reference materials in appendices * Instructor's manual with problems and solutions (available only to teachers)

1,143 citations

Journal ArticleDOI
TL;DR: More than 70 refereed papers have been published based on GLIMPSE data as of 2008 November as mentioned in this paper, and some serendipitous discoveries have been made on evolved stars.
Abstract: A brief description is given of the GLIMPSE surveys, including the areas surveyed, sensitivity limits, and products. The primary motivations for this review are to describe some of the main scientific results enabled by the GLIMPSE surveys and to note potential future applications of the GLIMPSE catalogs and images. In particular, we discuss contributions to our understanding of star formation and early evolution, the interstellar medium, galactic structure, and evolved stars. Infrared dark clouds (IRDCs), young stellar objects (YSOs), and infrared bubbles/H II regions are discussed in some detail. A probable triggered star formation associated with expanding infrared bubbles is briefly mentioned. The distribution and morphologies of dust and polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium are discussed. Examples are shown from GLIMPSE images of bow shocks, pillars (elephant trunks), and instabilities in massive star-formation regions. The infrared extinction law of diffuse interstellar dust is discussed. The large-scale structure of the Galaxy has been traced by red-clump giants using the GLIMPSE point-source catalog to reveal the radius and orientation of the central bar, the stellar radial scale length, an obvious increase in star counts toward the tangency to the Scutum-Centaurus spiral arm, the lack of an obvious tangency from star counts toward the Sagittarius spiral arm, and a sharp increase in star counts toward the nuclear bulge. Recent results on evolved stars and some serendipitous discoveries are mentioned. More than 70 refereed papers have been published based on GLIMPSE data as of 2008 November.

1,092 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of repeated supernova (SN) explosions from starbursts in dwarf galaxies on the interstellar medium of these galaxies, taking into account the gravitational potential of their dominant dark matter halos, were explored.
Abstract: We model the effects of repeated supernova (SN) explosions from starbursts in dwarf galaxies on the interstellar medium of these galaxies, taking into account the gravitational potential of their dominant dark matter halos. We explore SN rates from one every 30,000 yr to one every 3 Myr, equivalent to steady mechanical luminosities of L=0.1-10×1038 ergs s−1, occurring in dwarf galaxies with gas masses Mg=106-109 M☉. We address in detail, both analytically and numerically, the following three questions: 1. When do the SN ejecta blow out of the disk of the galaxy? 2. When blowout occurs, what fraction of the interstellar gas is blown away, escaping the potential of the galactic halo? 3. What happens to the metals ejected from the massive stars of the starburst? Are they retained or blown away?

1,049 citations


Cites background from "Interstellar bubbles. II - Structur..."

  • ...The gist of their argument can be seen by considering a superbubble in a homogenous medium (Weaver et al. 1977), whose radius R ∝ L1/5t3/5, but whose kinetic energy E ∝ Lt....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present the current knowledge and understanding of the interstellar medium of our galaxy and discuss the interaction of these interstellar constituents, both with each other and with stars, in the framework of the general galactic ecosystem.
Abstract: This article reviews the current knowledge and understanding of the interstellar medium of our galaxy. The author first presents each of the three basic constituents---ordinary matter, cosmic rays, and magnetic fields---of the interstellar medium, with emphasis on their physical and chemical properties as inferred from a broad range of observations. The interaction of these interstellar constituents, both with each other and with stars, is then discussed in the framework of the general galactic ecosystem.

986 citations