scispace - formally typeset

Journal ArticleDOI

Intracellular trafficking of yeast telomerase components

01 Jul 2002-EMBO Reports (John Wiley & Sons, Ltd)-Vol. 3, Iss: 7, pp 652-659

TL;DR: It is found that Est1p, Est2p and TLC1 can migrate independently of each other to the nucleus and a role of the nucleolus in telomerase biogenesis is suggested.

AbstractTelomerase uses an internal RNA moiety as template for the synthesis of telomere repeats. In Saccharomyces cerevisiae, the telomerase holoenzyme contains the telomerase reverse transcriptase subunit Est2p, the telomerase RNA moiety TLC1, the telomerase associated proteins Est1p and Est3p, and Sm proteins. Here we assess telomerase assembly by determining the localization of telomerase components. We found that Est1p, Est2p and TLC1 can migrate independently of each other to the nucleus. With limiting amounts of TLC1, overexpressed Est1p and Est2p accumulated in the nucleolus, whereas enzymatically active Est2p–TLC1 complexes are distributed over the entire nucleus. The distribution to the nucleoplasm depended on the specific interaction between Est2p and TLC1 but was independent of Est1p and Est3p. Altogether, our results suggest a role of the nucleolus in telomerase biogenesis. We also describe experiments that support a transient cytoplasmic localization of TLC1 RNA.

Topics: Telomerase RNA component (75%), Telomerase reverse transcriptase (71%), Telomerase (63%), Telomere (61%), Protein subunit (58%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: The details of telomerase and its regulation by the telomere are discussed, including single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomersase and may also regulate the extent or frequency of elongation.
Abstract: ▪ Abstract Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding y...

805 citations


Journal ArticleDOI
30 Apr 2004-Cell
TL;DR: It is demonstrated that telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states by taking a molecular snapshot of a single round of telomeres replication.
Abstract: Telomerase counteracts telomere erosion that stems from incomplete chromosome end replication and nucleolytic processing. A precise understanding of telomere length homeostasis has been hampered by the lack of assays that delineate the nonuniform telomere extension events of single chromosome molecules. Here, we measure telomere elongation at nucleotide resolution in Saccharomyces cerevisiae. The number of nucleotides added to a telomere in a single cell cycle varies between a few to more than 100 nucleotides and is independent of telomere length. Telomerase does not act on every telomere in each cell cycle, however. Instead, it exhibits an increasing preference for telomeres as their lengths decline. Deletion of the telomeric proteins Rif1 or Rif2 gives rise to longer telomeres by increasing the frequency of elongation events. Thus, by taking a molecular snapshot of a single round of telomere replication, we demonstrate that telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states.

512 citations


Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Since the discovery of an enzyme that extended the DNA at chromosome telomeres in the ciliate, Tetrahymena, there has been an explosion of knowledge about both the RNA and protein subunits of this unusual ribonucleoprotein enzyme.
Abstract: In their 1985 Cell paper, Greider and Blackburn announced the discovery of an enzyme that extended the DNA at chromosome telomeres in the ciliate, Tetrahymena. Since then, there has been an explosion of knowledge about both the RNA and protein subunits of this unusual ribonucleoprotein enzyme in organisms ranging from the ciliates to yeast to humans. The regulation of telomerase is now understood to take place both at the level of synthesis of the enzyme and via the state of its substrate, the telomere itself. The roles of telomerase in both cellular immortality and cancer are vibrant areas of current research.

424 citations


Cites background from "Intracellular trafficking of yeast ..."

  • ...Whether this functions (Ferrezuelo et al., 2002; Teixeira et al., 2002). template-recognition element directly binds to TERT or Human telomerase RNA, also a pol II transcript, has a interacts with another portion of the RNA remains a snoRNP (small nucleolar RNP) domain, appears to be question for…...

    [...]


Journal ArticleDOI
TL;DR: Concomitant overexpression of TERT and TR was necessary and sufficient to substantially increase telomerase activity, and in less than 50 PDs, the length of telomeres increased 3–8‐fold beyond physiological size, while telomere‐bound TRF1 and TRF2 increased proportionally to telomer length.
Abstract: Stabilization of telomere length in germline and highly proliferative human cells is required for long-term survival and for the immortal phenotype of cancer-derived cells. This is achieved through expression of telomerase reverse transcriptase (TERT), which synthesizes telomeric repeats through reverse transcription of its tightly associated RNA template (TR). The telomeric repeat binding factor TRF1 inhibits telomerase at telomeres in cis in a length-dependent manner to achieve telomere length homeostasis. Here we manipulate telomerase activity over a wide range in cancer and primary cells. Concomitant overexpression of TERT and TR was necessary and sufficient to substantially increase telomerase activity. Upon overexpression, more telomerase associated with telomeres and telomeres elongated at a constant rate (up to 0.8 kb/population doubling (PD)) in a length-independent manner. Thus, in less than 50 PDs, the length of telomeres increased 3-8-fold beyond physiological size, while telomere-bound TRF1 and TRF2 increased proportionally to telomere length. Thus, long telomeres do not permanently adopt a structural state that is non-extendible. A low cellular concentration of telomerase is critical to achieve preferential elongation of short telomeres and telomere length homeostasis.

273 citations


Cites background from "Intracellular trafficking of yeast ..."

  • ...High levels of telomerase activity result in continuous telomere elongation In budding yeast, overexpression of the TR subunit TLC1 together with the TERT subunit Est2p also results in higher telomerase activity levels in cell extracts (Teixeira et al, 2002)....

    [...]


Journal ArticleDOI
TL;DR: Insights that have been gained into the cellular pathways for biogenesis and regulation of telomerase ribonucleoproteins raise new questions, particularly concerning the dynamic nature of this unique polymerase.
Abstract: Chromosome stability requires a dynamic balance of DNA loss and gain in each terminal tract of telomeric repeats. Repeat addition by a specialized reverse transcriptase, telomerase, has an important role in maintaining this equilibrium. Insights that have been gained into the cellular pathways for biogenesis and regulation of telomerase ribonucleoproteins raise new questions, particularly concerning the dynamic nature of this unique polymerase.

263 citations


References
More filters

Journal ArticleDOI
26 Jan 1989-Nature
TL;DR: The essential RNA component of this ribonucleoprotein enzyme has now been cloned and found to contain the sequence CAACCCCAA, which seems to be the template for the synthesis of TTGGGG repeats.
Abstract: The telomerase enzyme of Tetrahymena synthesizes repeats of the telomeric DNA sequence TTGGGG de novo in the absence of added template. The essential RNA component of this ribonucleoprotein enzyme has now been cloned and found to contain the sequence CAACCCCAA, which seems to be the template for the synthesis of TTGGGG repeats.

1,561 citations


"Intracellular trafficking of yeast ..." refers background in this paper

  • ...Telomerase is a ribonucleoprotein (RNP) polymerase that uses an internal RNA moiety as template for the synthesis of telomere repeats (Greider and Blackburn, 1989; Lingner et al., 1997b)....

    [...]


Journal ArticleDOI
25 Apr 1997-Science
TL;DR: The reverse transcriptase protein fold, previously known to be involved in retroviral replication and retrotransposition, is essential for normal chromosome telomere replication in diverse eukaryotes.
Abstract: Telomerase is a ribonucleoprotein enzyme essential for the replication of chromosome termini in most eukaryotes. Telomerase RNA components have been identified from many organisms, but no protein component has been demonstrated to catalyze telomeric DNA extension. Telomerase was purified from Euplotes aediculatus, a ciliated protozoan, and one of its proteins was partially sequenced by nanoelectrospray tandem mass spectrometry. Cloning and sequence analysis of the corresponding gene revealed that this 123-kilodalton protein (p123) contains reverse transcriptase motifs. A yeast (Saccharomyces cerevisiae) homolog was found and subsequently identified as EST2 (ever shorter telomeres), deletion of which had independently been shown to produce telomere defects. Introduction of single amino acid substitutions within the reverse transcriptase motifs of Est2 protein led to telomere shortening and senescence in yeast, indicating that these motifs are important for catalysis of telomere elongation in vivo. In vitro telomeric DNA extension occurred with extracts from wild-type yeast but not from est2 mutants or mutants deficient in telomerase RNA. Thus, the reverse transcriptase protein fold, previously known to be involved in retroviral replication and retrotransposition, is essential for normal chromosome telomere replication in diverse eukaryotes.

1,260 citations


"Intracellular trafficking of yeast ..." refers background or result in this paper

  • ...Telomerase is a ribonucleoprotein (RNP) polymerase that uses an internal RNA moiety as template for the synthesis of telomere repeats (Greider and Blackburn, 1989; Lingner et al., 1997b)....

    [...]

  • ...Thus, Est1p and Est3p do not influence the steady-state localization of Est2p and TLC1 or their association, which is consistent with previous studies showing that Est1p and Est3p are not required for telomerase activity in vitro (Cohn and Blackburn, 1995; Lingner et al., 1997a)....

    [...]

  • ...Active telomerase is localized in the nucleoplasm Telomerase activity requires Est2p and TLC1, which together make up the catalytic core (Lingner et al., 1997b)....

    [...]


Journal ArticleDOI
02 Dec 1999-Nature
TL;DR: It is found that primary fibroblasts and lymphoblasts from DKC-affected males are not detectably deficient in conventional H/ACA small nucleolar RNA accumulation or function; however, DKC cells have a lower level of telomerase RNA, produce lower levels of telomersase activity and have shorter telomeres than matched normal cells.
Abstract: The X-linked form of the human disease dyskeratosis congenita (DKC) is caused by mutations in the gene encoding dyskerin1. Sufferers have defects in highly regenerative tissues such as skin and bone marrow, chromosome instability and a predisposition to develop certain types of malignancy. Dyskerin is a putative pseudouridine synthase, and it has been suggested that DKC may be caused by a defect in ribosomal RNA processing. Here we show that dyskerin is associated not only with H/ACA small nucleolar RNAs2, but also with human telomerase RNA, which contains an H/ACA RNA motif3. Telomerase adds simple sequence repeats to chromosome ends using an internal region of its RNA as a template4, and is required for the indefinite proliferation of primary human cells5. We find that primary fibroblasts and lymphoblasts from DKC-affected males are not detectably deficient in conventional H/ACA small nucleolar RNA accumulation or function; however, DKC cells have a lower level of telomerase RNA, produce lower levels of telomerase activity and have shorter telomeres than matched normal cells. The pathology of DKC is consistent with compromised telomerase function leading to a defect in telomere maintenance, which may limit the proliferative capacity of human somatic cells in epithelia and blood.

1,073 citations


"Intracellular trafficking of yeast ..." refers background in this paper

  • ...In support of this, it was shown that vertebrate telomerase RNA contains an H/ACA motif that targets the RNA to nucleoli where it was hypothesized to associate with the catalytic subunit of telomerase (Mitchell et al., 1999; Lukowiak et al., 2001)....

    [...]


Journal ArticleDOI
19 May 1989-Cell
TL;DR: Using this assay, a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss is isolated, which defines a new gene, designated EST1 (for ever shorter telomeres).
Abstract: We describe a general assay designed to detect mutants of yeast that are defective for any of several aspects of telomere function. Using this assay, we have isolated a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss. This mutation defines a new gene, designated EST1 (for ever shorter telomeres). Null alleles of EST1 are not immediately inviable; instead, they have a senescence phenotype, due to the gradual loss of sequences essential for telomere function, leading to a progressive decrease in chromosomal stability and subsequent cell death.

908 citations


Journal ArticleDOI
TL;DR: The recent, and often surprising, advances in the understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae will underscore the unexpected complexity of eukaryotic ribosomes synthesis.
Abstract: The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.

765 citations


"Intracellular trafficking of yeast ..." refers background in this paper

  • ...Since the nucleolus is considered to be a site with a high concentration of trans-acting factors required for the assembly of ribosomes and other RNPs (Pederson, 1998; Sleeman and Lamond, 1999; Venema and Tollervey, 1999), it may provide factors that assist in the assembly of telomerase....

    [...]