scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies.

30 May 2017-International Journal of Systematic and Evolutionary Microbiology (Microbiology Society)-Vol. 67, Iss: 5, pp 1613-1617
TL;DR: An integrated database, called EzBioCloud, that holds the taxonomic hierarchy of the Bacteria and Archaea, which is represented by quality-controlled 16S rRNA gene and genome sequences, with accompanying bioinformatics tools.
Abstract: The recent advent of DNA sequencing technologies facilitates the use of genome sequencing data that provide means for more informative and precise classification and identification of members of the Bacteria and Archaea. Because the current species definition is based on the comparison of genome sequences between type and other strains in a given species, building a genome database with correct taxonomic information is of paramount need to enhance our efforts in exploring prokaryotic diversity and discovering novel species as well as for routine identifications. Here we introduce an integrated database, called EzBioCloud, that holds the taxonomic hierarchy of the Bacteria and Archaea, which is represented by quality-controlled 16S rRNA gene and genome sequences. Whole-genome assemblies in the NCBI Assembly Database were screened for low quality and subjected to a composite identification bioinformatics pipeline that employs gene-based searches followed by the calculation of average nucleotide identity. As a result, the database is made of 61 700 species/phylotypes, including 13 132 with validly published names, and 62 362 whole-genome assemblies that were identified taxonomically at the genus, species and subspecies levels. Genomic properties, such as genome size and DNA G+C content, and the occurrence in human microbiome data were calculated for each genus or higher taxa. This united database of taxonomy, 16S rRNA gene and genome sequences, with accompanying bioinformatics tools, should accelerate genome-based classification and identification of members of the Bacteria and Archaea. The database and related search tools are available at www.ezbiocloud.net/.
Citations
More filters
Journal ArticleDOI
TL;DR: This work used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence.
Abstract: Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.

2,098 citations

Journal ArticleDOI
TL;DR: The minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes are described.
Abstract: Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes.

1,908 citations


Cites background or methods from "Introducing EzBioCloud: a taxonomic..."

  • ...In this two-step approach, the list of species that is required to compare to the strain in question using genome sequences is obtained using a 16S-based search [11]; only species showing 98....

    [...]

  • ...152 On: Mon, 15 Jan 2018 03:15:32 contrast, an almost complete database of 16S rRNA gene (16S) sequences is available for the type strains of prokaryotic species [11, 12]....

    [...]

Journal ArticleDOI
TL;DR: TYGS, the Type (Strain) Genome Server, a user-friendly high-throughput web server for genome-based prokaryote taxonomy and analysis connected to a large, continuously growing database of genomic, taxonomic and nomenclatural information.
Abstract: Microbial taxonomy is increasingly influenced by genome-based computational methods. Yet such analyses can be complex and require expert knowledge. Here we introduce TYGS, the Type (Strain) Genome Server, a user-friendly high-throughput web server for genome-based prokaryote taxonomy, connected to a large, continuously growing database of genomic, taxonomic and nomenclatural information. It infers genome-scale phylogenies and state-of-the-art estimates for species and subspecies boundaries from user-defined and automatically determined closest type genome sequences. TYGS also provides comprehensive access to nomenclature, synonymy and associated taxonomic literature. Clinically important examples demonstrate how TYGS can yield new insights into microbial classification, such as evidence for a species-level separation of previously proposed subspecies of Salmonella enterica. TYGS is an integrated approach for the classification of microbes that unlocks novel scientific approaches to microbiologists worldwide and is particularly helpful for the rapidly expanding field of genome-based taxonomic descriptions of new genera, species or subspecies.

1,202 citations

Journal ArticleDOI
TL;DR: This work presents the up-to-date bacterial core gene set, named UBCG, and software suites to accommodate necessary steps to generate and evaluate phylogenetic trees, successfully used to infer phylogenomic relationship of Escherichia and related taxa.
Abstract: Genome-based phylogeny plays a central role in the future taxonomy and phylogenetics of Bacteria and Archaea by replacing 16S rRNA gene phylogeny. The concatenated core gene alignments are frequently used for such a purpose. The bacterial core genes are defined as single-copy, homologous genes that are present in most of the known bacterial species. There have been several studies describing such a gene set, but the number of species considered was rather small. Here we present the up-to-date bacterial core gene set, named UBCG, and software suites to accommodate necessary steps to generate and evaluate phylogenetic trees. The method was successfully used to infer phylogenomic relationship of Escherichia and related taxa and can be used for the set of genomes at any taxonomic ranks of Bacteria. The UBCG pipeline and file viewer are freely available at https://www.ezbiocloud.net/tools/ubcg and https://www.ezbiocloud.net/tools/ubcg_viewer , respectively.

791 citations


Cites methods from "Introducing EzBioCloud: a taxonomic..."

  • ...Identification of bacterial core gene set The UBCG set was identified using the complete genome sequences available from the EzBioCloud database (https:// www.ezbiocloud.net/; Yoon et al., 2017)....

    [...]

  • ...The UBCG set was identified using the complete genome sequences available from the EzBioCloud database (https:// www.ezbiocloud.net/; Yoon et al., 2017)....

    [...]

Journal ArticleDOI
TL;DR: The Type (Strain) Genome Server (TYGS) is a high-throughput platform for accurate genome-based taxonomy and is available at https://tygs.dsmz.de.
Abstract: Microbial systematics is heavily influenced by genome-based methods and challenged by an ever increasing number of taxon names and associated sequences in public data repositories. This poses a challenge for database systems, particularly since it is obviously advantageous if such data are based on a globally recognized approach to manage names, such as the International Code of Nomenclature of Prokaryotes. The amount of data can only be handled if accurate and reliable high-throughput platforms are available that are able to both comply with this demand and to keep track of all changes in an efficient and flexible way. The List of Prokaryotic names with Standing in Nomenclature (LPSN) is an expert-curated authoritative resource for prokaryotic nomenclature and is available at https://lpsn.dsmz.de. The Type (Strain) Genome Server (TYGS) is a high-throughput platform for accurate genome-based taxonomy and is available at https://tygs.dsmz.de. We here present important updates of these two previously introduced, heavily interconnected platforms for taxonomic nomenclature and classification, including new high-level facilities providing access to bioinformatic algorithms, a considerable expansion of the database content, and new ways to easily access the data.

404 citations

References
More filters
Journal ArticleDOI
TL;DR: This work presents some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees.
Abstract: Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting postanalyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU

23,838 citations


"Introducing EzBioCloud: a taxonomic..." refers methods in this paper

  • ...Maximum-likelihood phylogenetic trees of each taxonomic group, such as phyla, classes, orders or families, were generated from manually aligned 16S rRNA gene sequences using RAxML software [14]....

    [...]

Journal ArticleDOI
TL;DR: The extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Abstract: SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.

18,256 citations

Journal ArticleDOI
TL;DR: UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters and offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets.
Abstract: Motivation: Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. Results: UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Availability: Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

17,301 citations


"Introducing EzBioCloud: a taxonomic..." refers methods in this paper

  • ...We employed the USEARCH program [16] instead of BLASTN in order to speed up the search process....

    [...]

Journal ArticleDOI
TL;DR: The results demonstrate that phylogeny and function are sufficiently linked that this 'predictive metagenomic' approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.
Abstract: Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community's functional capabilities. Here we describe PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this 'predictive metagenomic' approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.

6,860 citations


"Introducing EzBioCloud: a taxonomic..." refers methods in this paper

  • ...If a species did not have any complete genomes, PICRUSt [18] was used to predict the values....

    [...]