scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Introduction to quantum electromagnetic circuits

01 Jul 2017-International Journal of Circuit Theory and Applications (John Wiley & Sons, Ltd)-Vol. 45, Iss: 7, pp 897-934
TL;DR: This review, which is an updated and modernized version of a previous set of Les Houches School lecture notes, has three main parts: how to construct a Hamiltonian for a general circuit, with an emphasis on the quantum treatment of dissipation.
Abstract: The article is a short opinionated review of the quantum treatment of electromagnetic circuits, with no pretension to exhaustiveness. This review, which is an updated and modernized version of a previous set of Les Houches School lecture notes, has three main parts. The first part describes how to construct a Hamiltonian for a general circuit, which can include dissipative elements. The second part describes the quantization of the circuit, with an emphasis on the quantum treatment of dissipation. The final part focuses on the Josephson nonlinear element and the main linear building blocks from which superconducting circuits are assembled. It also includes a brief review of the main types of superconducting artificial atoms, elementary multi-level quantum systems made from basic circuit elements. Copyright © 2017 John Wiley & Sons, Ltd.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature, is presented.
Abstract: This is an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature. The main article is freely available at this https URL. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.

4,873 citations

Journal ArticleDOI
Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin2, Joseph C. Bardin1, Rami Barends1, Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandão1, Fernando G. S. L. Brandão4, David A. Buell1, B. Burkett1, Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, Edward Farhi1, Brooks Foxen5, Brooks Foxen1, Austin G. Fowler1, Craig Gidney1, Marissa Giustina1, R. Graff1, Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1, Michael J. Hartmann6, Alan Ho1, Markus R. Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1, Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, Alexander N. Korotkov8, Alexander N. Korotkov1, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, E. Lucero1, Dmitry I. Lyakh7, Salvatore Mandrà3, Jarrod R. McClean1, Matt McEwen5, Anthony Megrant1, Xiao Mi1, Kristel Michielsen9, Kristel Michielsen10, Masoud Mohseni1, Josh Mutus1, Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1, Andre Petukhov1, John Platt1, Chris Quintana1, Eleanor Rieffel3, Pedram Roushan1, Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung11, Kevin J. Sung1, Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1, Benjamin Villalonga12, Theodore White1, Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1, John M. Martinis1, John M. Martinis5 
24 Oct 2019-Nature
TL;DR: Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.
Abstract: The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8-14 for this specific computational task, heralding a much-anticipated computing paradigm.

2,527 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control and readout techniques.
Abstract: The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to a one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements—qubit design, noise properties, qubit control, and readout techniques—developed during this period, bridging fundamental concepts in circuit quantum electrodynamics and contemporary, state-of-the-art applications in gate-model quantum computation.

969 citations

Journal ArticleDOI
TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.

909 citations

Journal ArticleDOI
TL;DR: The time is ripe for describing some of the recent development of superconducting devices, systems and applications as well as practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Abstract: During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

809 citations

References
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

Journal ArticleDOI
TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Abstract: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing. The first two papers deal with entanglement. The paper by R. Mosseri and P. Ribeiro presents a detailed description of the two-and three-qubit geometry in Hilbert space, dealing with the geometry of fibrations and discrete geometry. The paper by J.-G.Luque et al. is more algebraic and considers invariants of pure k-qubit states and their application to entanglement measurement.

14,205 citations


"Introduction to quantum electromagn..." refers background in this paper

  • ...Superconducting qubits for quantum information The concept of solving problems with the use of quantum algorithms, introduced in the early 1990s [9, 10], was welcomed as a revolutionary change in the theory of computational complexity, but the feat...

    [...]

Book
01 Jan 1951

10,667 citations

Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations