scispace - formally typeset
Search or ask a question
Book

introduction to random signals and applied kalman filtering

TL;DR: In this paper, the Discrete Kalman Filter (DFL) is used for smoothing and prediction linearization in the Global Positioning System (GPS) and a case study is presented.
Abstract: Probability and Random Variables Mathematical Description of Random Signals Response of Linear Systems to Random Inputs Wiener Filtering The Discrete Kalman Filter Applications and Additional Topics on Discrete Kalman Filtering The Continuous Kalman Filter Discrete Smoothing and Prediction Linearization and Additional Topics on Applied Kalman Filtering The Global Positioning System: A Case Study.
Citations
More filters
BookDOI
29 Nov 1995
TL;DR: The discrete Kalman filter as mentioned in this paper is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error.
Abstract: In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown. The purpose of this paper is to provide a practical introduction to the discrete Kalman filter. This introduction includes a description and some discussion of the basic discrete Kalman filter, a derivation, description and some discussion of the extended Kalman filter, and a relatively simple (tangible) example with real numbers & results.

2,811 citations

Journal ArticleDOI
01 May 1996
TL;DR: The paper describes the engineering and design of a doubly fed induction generator (DFIG), using back-to-back PWM voltage-source converters in the rotor circuit, which results in independent control of active and reactive power drawn the supply, while ensuring sinusoidal supply currents.
Abstract: The paper describes the engineering and design of a doubly fed induction generator (DFIG), using back-to-back PWM voltage-source converters in the rotor circuit. A vector-control scheme for the supply-side PWM converter results in independent control of active and reactive power drawn the supply, while ensuring sinusoidal supply currents. Vector control of the rotor-connected converter provides for wide speed-range operation; the vector scheme is embedded in control loops which enable optimal speed tracking for maximum energy capture from the wind. An experimental rig, which represents a 7.5 kW variable speed wind-energy generation system is described, and experimental results are given that illustrate the excellent performance characteristics of the system. The paper considers a grid-connected system; a further paper will describe a stand-alone system.

2,618 citations

Journal ArticleDOI
TL;DR: An observer on SO(3), termed the explicit complementary filter, that requires only accelerometer and gyro outputs; is suitable for implementation on embedded hardware; and provides good attitude estimates as well as estimating the gyro biases online.
Abstract: This paper considers the problem of obtaining good attitude estimates from measurements obtained from typical low cost inertial measurement units. The outputs of such systems are characterized by high noise levels and time varying additive biases. We formulate the filtering problem as deterministic observer kinematics posed directly on the special orthogonal group SO (3) driven by reconstructed attitude and angular velocity measurements. Lyapunov analysis results for the proposed observers are derived that ensure almost global stability of the observer error. The approach taken leads to an observer that we term the direct complementary filter. By exploiting the geometry of the special orthogonal group a related observer, termed the passive complementary filter, is derived that decouples the gyro measurements from the reconstructed attitude in the observer inputs. Both the direct and passive filters can be extended to estimate gyro bias online. The passive filter is further developed to provide a formulation in terms of the measurement error that avoids any algebraic reconstruction of the attitude. This leads to an observer on SO(3), termed the explicit complementary filter, that requires only accelerometer and gyro outputs; is suitable for implementation on embedded hardware; and provides good attitude estimates as well as estimating the gyro biases online. The performance of the observers are demonstrated with a set of experiments performed on a robotic test-bed and a radio controlled unmanned aerial vehicle.

1,581 citations

01 Jan 2004
TL;DR: This work has consistently shown that there are large performance benefits to be gained by applying Sigma-Point Kalman filters to areas where EKFs have been used as the de facto standard in the past, as well as in new areas where the use of the EKF is impossible.
Abstract: Probabilistic inference is the problem of estimating the hidden variables (states or parameters) of a system in an optimal and consistent fashion as a set of noisy or incomplete observations of the system becomes available online. The optimal solution to this problem is given by the recursive Bayesian estimation algorithm which recursively updates the posterior density of the system state as new observations arrive. This posterior density constitutes the complete solution to the probabilistic inference problem, and allows us to calculate any “optimal” estimate of the state. Unfortunately, for most real-world problems, the optimal Bayesian recursion is intractable and approximate solutions must be used. Within the space of approximate solutions, the extended Kalman filter (EKF) has become one of the most widely used algorithms with applications in state, parameter and dual estimation. Unfortunately, the EKF is based on a sub-optimal implementation of the recursive Bayesian estimation framework applied to Gaussian random variables. This can seriously affect the accuracy or even lead to divergence of any inference system that is based on the EKF or that uses the EKF as a component part. Recently a number of related novel, more accurate and theoretically better motivated algorithmic alternatives to the EKF have surfaced in the literature, with specific application to state estimation for automatic control. We have extended these algorithms, all based on derivativeless deterministic sampling based approximations of the relevant Gaussian statistics, to a family of algorithms called Sigma-Point Kalman Filters (SPKF). Furthermore, we successfully expanded the use of this group of algorithms (SPKFs) within the general field of probabilistic inference and machine learning, both as stand-alone filters and as subcomponents of more powerful sequential Monte Carlo methods (particle filters). We have consistently shown that there are large performance benefits to be gained by applying Sigma-Point Kalman filters to areas where EKFs have been used as the de facto standard in the past, as well as in new areas where the use of the EKF is impossible.

1,116 citations

Journal ArticleDOI
TL;DR: The detailed development of an innovation-based adaptive Kalman filter for an integrated inertial navigation system/global positioning system (INS/GPS) is given, based on the maximum likelihood criterion for the proper choice of the filter weight and hence the filter gain factors.
Abstract: After reviewing the two main approaches of adaptive Kalman filtering, namely, innovation-based adaptive estimation (IAE) and multiple-model-based adaptive estimation (MMAE), the detailed development of an innovation-based adaptive Kalman filter for an integrated inertial navigation system/global positioning system (INS/GPS) is given. The developed adaptive Kalman filter is based on the maximum likelihood criterion for the proper choice of the filter weight and hence the filter gain factors. Results from two kinematic field tests in which the INS/GPS was compared to highly precise reference data are presented. Results show that the adaptive Kalman filter outperforms the conventional Kalman filter by tuning either the system noise variance–covariance (V–C) matrix `Q' or the update measurement noise V–C matrix `R' or both of them.

949 citations