scispace - formally typeset
Search or ask a question
Book

Introduction to Thermodynamics of Irreversible Processes

About: The article was published on 1968-01-15 and is currently open access. It has received 2511 citations till now.
Citations
More filters
Book ChapterDOI
01 Jan 1960

3,018 citations

Book
01 Jan 1993
TL;DR: In this paper, the authors propose a theory which goes beyond the classical formulation of thermodynamics by enlarging the space of basic independent variables, through the introduction of non-equilibrium variables, such as the dissipative fluxes appearing in the balance equations.
Abstract: Our aim is to propose a theory which goes beyond the classical formulation of thermodynamics. This is achieved by enlarging the space of basic independent variables, through the introduction of non-equilibrium variables, such as the dissipative fluxes appearing in the balance equations. The next step is to find evolution equations for the dissipative fluxes. Whereas the evolution equations for the classical variables are given by the usual balance laws, no general criteria exist concerning the evolution equations of the dissipative fluxes, with the exception of the restrictions imposed on them by the second law of thermodynamics.

1,739 citations

Journal ArticleDOI
TL;DR: The thermodynamic theory of symmetry breaking instabilities in dissipative systems is presented in this article, where several kinetic schemes which lead to an unstable behavior are indicated, and the role of diffusion is studied in more detailed way.
Abstract: The thermodynamic theory of symmetry breaking instabilities in dissipative systems is presented. Several kinetic schemes which lead to an unstable behavior are indicated. The role of diffusion is studied in a more detailed way. Moreover we devote some attention to the problem of occurrence of time order in dissipative systems. It is concluded that there exists now a firm theoretical basis for the understanding of chemical dissipative structures. It may therefore be stated that a theoretical basis also exists for the understanding of structural and functional order in chemical open systems.

1,212 citations

Journal ArticleDOI
TL;DR: A mapping to study the qualitative properties of continuous biochemical control networks which are invariant to the parameters used to describe the networks but depend only on the logical structure of the networks.

1,016 citations

Journal ArticleDOI
TL;DR: A theory of the coupled mass transport and large deformation of a polymeric gel, which assumes that the local rearrangement of molecules is instantaneous, and model the long-range migration by assuming that the small molecules diffuse inside the gel.
Abstract: A large quantity of small molecules may migrate into a network of long polymers, causing the network to swell, forming an aggregate known as a polymeric gel. This paper formulates a theory of the coupled mass transport and large deformation. The free energy of the gel results from two molecular processes: stretching the network and mixing the network with the small molecules. Both the small molecules and the long polymers are taken to be incompressible, a constraint that we enforce by using a Lagrange multiplier, which coincides with the osmosis pressure or the swelling stress. The gel can undergo large deformation of two modes. The first mode results from the fast process of local rearrangement of molecules, allowing the gel to change shape but not volume. The second mode results from the slow process of long-range migration of the small molecules, allowing the gel to change both shape and volume. We assume that the local rearrangement is instantaneous, and model the long-range migration by assuming that the small molecules diffuse inside the gel. The theory is illustrated with a layer of a gel constrained in its plane and subject to a weight in the normal direction. We also predict the scaling behavior of a gel under a conical indenter.

824 citations