scispace - formally typeset
Open AccessPosted Content

Invariant Risk Minimization

Reads0
Chats0
TLDR
This work introduces Invariant Risk Minimization, a learning paradigm to estimate invariant correlations across multiple training distributions and shows how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.
Abstract
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.

read more

Citations
More filters
Proceedings ArticleDOI

Counterfactual Zero-Shot and Open-Set Visual Recognition

Abstract: We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If "yes", the sample is from a certain class, and "no" otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.
Book ChapterDOI

Learning to Balance Specificity and Invariance for In and Out of Domain Generalization

TL;DR: Domain-specific masks for generalization (DMG) as discussed by the authors learns a balance of domain-invariant and domain-specific features to improve both in-domain and out-of-domain generalization performance.
Proceedings Article

Domain adaptation with conditional distribution matching and generalized label shift

TL;DR: This article proposed generalized label shift (GLS) as a way to improve robustness against mismatched label distributions, which improves the transfer performance of adversarial domain adaptation methods in multi-class classification and general discriminators.
Posted Content

Understanding the Failure Modes of Out-of-Distribution Generalization

TL;DR: This work identifies the fundamental factors that give rise to why models fail this way in easy-to-learn tasks where one would expect these models to succeed, and uncovers two complementary failure modes.
Posted Content

No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems

TL;DR: This work proposes GEORGE, a method to both measure and mitigate hidden stratification even when subclass labels are unknown, and theoretically characterize the performance of GEORGE in terms of the worst-case generalization error across any subclass.
References
More filters
Posted Content

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: A new language representation model, BERT, designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
MonographDOI

Causality: models, reasoning, and inference

TL;DR: The art and science of cause and effect have been studied in the social sciences for a long time as mentioned in this paper, see, e.g., the theory of inferred causation, causal diagrams and the identification of causal effects.
Journal ArticleDOI

Estimating causal effects of treatments in randomized and nonrandomized studies.

TL;DR: A discussion of matching, randomization, random sampling, and other methods of controlling extraneous variation is presented in this paper, where the objective is to specify the benefits of randomization in estimating causal effects of treatments.
Book

Introduction to Smooth Manifolds

TL;DR: In this paper, a review of topology, linear algebra, algebraic geometry, and differential equations is presented, along with an overview of the de Rham Theorem and its application in calculus.
Related Papers (5)