scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine

TL;DR: In this paper, the evaporation characteristics of pine oil droplet were studied through suspended droplet experiment so as to get better insights on pineoil droplet evapuration at various temperatures.
About: This article is published in Applied Energy.The article was published on 2014-02-15. It has received 44 citations till now. The article focuses on the topics: Pine oil & Diesel fuel.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of alcohol/diesel blends on the exhaust emissions of diesel engines operating under transient conditions, i.e., acceleration, load increase, starting and transient/driving cycles, are reviewed.
Abstract: The present work reviews the literature concerning the effects of alcohol/diesel blends on the exhaust emissions of diesel engines operating under transient conditions, i.e., acceleration, load increase, starting and transient/driving cycles. Two very promising alcohols are covered in this survey, namely ethanol and n-butanol. The analysis focuses on all regulated exhaust pollutants, i.e., particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbons (HC), with results for unregulated emissions, carbon dioxide and combustion noise radiation also included. The main mechanisms of exhaust emissions during transients are identified and discussed, with respect to the fundamental aspects of transient operation and the differing properties of alcohols relative to the reference diesel oil. Based on the published studies up today, summarization of emissions data and cumulative trends are presented, for the purpose of quantifying the alcohol blends benefits or penalties on the regulated emissions during various driving cycles. Particularly for the emitted PM and smoke, a statistically significant correlation with the oxygen content exists (R2=0.85 and 0.95, respectively). A similar correlation holds true for the heavy-duty, engine-dynamometer data of engine-out CO. Finally, a detailed list is provided that summarizes the main data from all studies published so far.

255 citations

Journal ArticleDOI
Abstract: Direct injection diesel engines are more popular in the automotive sector than spark ignition (SI) engines due to its fuel lean operation However, the demand of fossil fuel is rising day by day and hence the major fuel source of diesel engine, the petroleum based fuel, is depleting rapidly Many countries depend mainly on imported fossil fuels due to lack of fuel reserves and it has great impact on the economy In addition to this, the major concerns of diesel engine are its oxides of nitrogen and smoke emissions Therefore, for the past several decades extensive efforts are being made to search for alternate fuels to overcome the dependence on fossil fuel and environment pollution In this regard, several alternate fuels namely hydrogen, oxygenated fuels like alcohol fuels, dimethyl ether and biodiesel fuels etc, have been extensively analysed Recent studies show that biodiesel is one of the most promising alternate fuels for diesel engines because of its biodegradable, oxygenated, sulphur free and renewable characteristics Hence, it is getting the attention of researchers all over the world The blends of biodiesel with fossil diesel have many benefits like reduction in emissions, lower engine wear, lesser engine oil consumption and comparable thermal efficiency vis-a-vis diesel fuel Exhaustive experimental works have been carried out to analyse the suitability of biodiesel fuel as alternate fuel and to explore their advantages in diesel engines Hence, this paper is attempted to present a comprehensive review on the performance, combustion and emission characteristics of some important biodiesel fuels on diesel engines This comprehensive review on the published literature will be helpful to the researchers to understand the state-of-the-art technology of the biodiesel fuelled compression ignition engine

238 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of using cerium oxide (CeO 2 ) nanoparticle as additive in Lemongrass Oil (LGO) emulsion fuel was experimentally investigated in a single cylinder, constant speed diesel engine.

226 citations

Journal ArticleDOI
TL;DR: In this paper, a review work focused on bio-fuels with lower viscosity and cetane number and their mode of operation in a diesel engine is presented and detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed.
Abstract: This review work focuses on biofuels with lower viscosity and cetane number and their mode of operation in a diesel engine. Though there were a number of review works describing the production, characterization and utilization of biodiesel, synthesized from vegetable oils, a comprehensive summary on other category of biofuels endowed with lower viscosity and cetane number has not come to light so far. In this backdrop, this review work would bring forth the existence of biofuels having lower viscosity and cetane number, classify them under one category and elucidate their operational feasibility in a diesel engine. Considerably, alcohol based fuels such as methanol, ethanol and butanol, and plant based light biofuels such as eucalyptus oil and pine oil have been chosen and classified as LVLC (less viscous and lower cetane) fuels in the current work. Besides describing the operation feasibility of these fuels, an extensive exploration of their physical, thermal and critical properties as well as their compositional attributes has been made. Despite their distinct properties, these fuels have found use in diesel engine by various strategies and apparently, they could be used in blends with diesel/biodiesel, dual fuel mode and as sole fuel. In this regard, herein, a detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed.

89 citations

Journal ArticleDOI
Quangang Wang1, Chunde Yao1, Dou Zhancheng1, Bin Wang1, Taoyang Wu1 
01 Nov 2015-Fuel
TL;DR: In this article, the combined effects of intake temperature and injection timing on the performance of a diesel-methanol dual fuel (DMDF) engine have been studied, and the results concerning performance, combustion characteristics and emissions were analyzed.

53 citations

References
More filters
Book
01 Jan 1988
TL;DR: In this article, the authors describe real engine flow and combustion processes, as well as engine operating characteristics and their operation, including engine design and operating parameters, engine characteristics, and operating characteristics.
Abstract: 1 Engine Types and Their Operations 2 Engine Design and Operating Parameters 3 Thermochemistry of Fuel-Air Mixtures 4 Properties of Working Fluids 5 Ideal Models of Engine Cycles 6 Gas Exchange Processes 7 SI Engine Fuel Metering and Manifold Phenomena 8 Charge Motion within the Cylinder 9 Combustion in Ignition Engines 10 Combustion in Compression Ignition Engines 11 Pollutant Formation and Control 12 Engine Heat Transfer 13 Engine Friction and Lubrication 14 Modeling Real Engine Flow and Combustion Processes 15 Engine Operating Characteristics Appendixes

14,372 citations

Journal ArticleDOI
TL;DR: Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

957 citations

Journal ArticleDOI
01 May 2007-Fuel
TL;DR: In this paper, the phase diagram of diesel-biodiesel-ethanol blends at different purities of ethanol and different temperatures was examined and compared to those of base diesel.

468 citations

Journal ArticleDOI
TL;DR: The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc as discussed by the authors.
Abstract: The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems.

416 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the feasibility of using high percentage of ethanol in diesel-ethanol blends, with biodiesel as a co-solvent and properties enhancer.

349 citations