scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

TL;DR: This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum and shows the CI model with a 1-m reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling.
Abstract: This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha–beta–gamma (ABG) model, the close-in (CI) free-space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models has been recently studied for use in standards bodies such as 3rd Generation Partnership Project (3GPP) and for use in the design of fifth-generation wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here, we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement data sets from 2 to 73 GHz over distances ranging from 4 to 1238 m. A series of sensitivity analyses of the three models shows that the four-parameter ABG model underpredicts path loss when relatively close to the transmitter, and overpredicts path loss far from the transmitter, and that the physically based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity tests across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1-m reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification—by replacing a floating non-physically based constant with a frequency-dependent constant that represents free-space path loss in the first meter of propagation. This paper shows this subtle change does not change the mathematical form of existing ITU/3GPP models and offers much easier analysis, intuitive appeal, better model parameter stability, and better accuracy in sensitivity tests over a vast range of microwave and mmWave frequencies, scenarios, and distances, while using a simpler model with fewer parameters.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations


Cites background from "Investigation of Prediction Accurac..."

  • ...There often is no strong frequency dependence beyond the f 2 dependence of free-space pathloss [60], [61]....

    [...]

Journal ArticleDOI
TL;DR: Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies are compared over the 0.5–100 GHz range.
Abstract: This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5–100 GHz range.

943 citations


Cites background or methods from "Investigation of Prediction Accurac..."

  • ...and has been shown to be robust and accurate in various scenarios [19], [24], [27], [28]....

    [...]

  • ...a) 5GCM: In the 5GCM white paper [12], the CI model (2) is chosen for modeling UMi LOS path loss, since α in the ABG model (5) is almost identical to the PLE of the CI model, and also γ is very close to 2 which is predicted by the physically based Friis’ free space equation and used in the CI model [28]....

    [...]

  • ...Work in [19] and [24] advocates a much more fundamental and accurate RMa model using the CIF model formulation in (4), where the frequency dependency of the PLE is replaced with a TX height dependency of the PLE, based on many propagation studies that showed UMa and RMa environment did not offer additional frequency dependency of the path loss over distance beyond the first meter of propagation [19], [24], [28], [83]....

    [...]

  • ...dency of path loss by using a CI reference distance based on Friis’ law as given by [12], [19], [21], [24], [28]...

    [...]

  • ...work in various environments in [21], [28], [29], [83], and [84] shows that Friis’ equation [85] dictates this is true only when the antenna gain is assumed to be constant over frequency....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Abstract: Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to the rates of multiple gigabit per second per user Though mmWave can be readily used in stationary scenarios, such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond) We first summarize the recent channel measurement campaigns and modeling results Then, we discuss in detail recent progresses in multiple input multiple output transceiver design for mmWave communications After that, we provide an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed

887 citations

Journal ArticleDOI
TL;DR: A 3GPP-like stochastic IR channel model is developed from measured power delay profiles, angle of departure, and angle of arrival power spectra, supporting air interface design of mmWave transceivers, filters, and multi-element antenna arrays.
Abstract: This paper presents a 3-D statistical channel impulse response (IR) model for urban line of sight (LOS) and non-LOS channels developed from 28- and 73-GHz ultrawideband propagation measurements in New York City, useful in the design of 5G wireless systems that will operate in both the ultra-high frequency/microwave and millimeter-wave (mmWave) spectrum to increase channel capacities. A 3GPP-like stochastic IR channel model is developed from measured power delay profiles, angle of departure, and angle of arrival power spectra. The extracted statistics are used to implement a channel model and simulator capable of generating 3-D mmWave temporal and spatial channel parameters for arbitrary mmWave carrier frequency, signal bandwidth, and antenna beamwidth. The model presented here faithfully reproduces realistic IRs of measured urban channels, supporting air interface design of mmWave transceivers, filters, and multi-element antenna arrays.

564 citations


Cites result from "Investigation of Prediction Accurac..."

  • ...Previous results yielded directional and omnidirectional path loss models in dense urban LOS and NLOS environments [12], [27], [32], [33], temporal and spatial channel parameters, such as cluster and angular spread statistics, and statistical distributions at 28 and 73 GHz based on measurements and…...

    [...]

Journal ArticleDOI
TL;DR: A method for estimating conditionally Gaussian random vectors with random covariance matrices, which uses techniques from the field of machine learning to obtain a similarly efficient (but suboptimal) estimator).
Abstract: We present a method for estimating conditionally Gaussian random vectors with random covariance matrices, which uses techniques from the field of machine learning. Such models are typical in communication systems, where the covariance matrix of the channel vector depends on random parameters, e.g., angles of propagation paths. If the covariance matrices exhibit certain Toeplitz and shift-invariance structures, the complexity of the minimum mean squared error (MMSE) channel estimator can be reduced to ${\mathcal O}(M\log M)$ floating point operations, where $M$ is the channel dimension. While in the absence of structure the complexity is much higher, we obtain a similarly efficient (but suboptimal) estimator by using the MMSE estimator of the structured model as a blueprint for the architecture of a neural network. This network learns the MMSE estimator for the unstructured model, but only within the given class of estimators that contains the MMSE estimator for the structured model. Numerical simulations with typical spatial channel models demonstrate the generalization properties of the chosen class of estimators to realistic channel models.

243 citations


Cites background from "Investigation of Prediction Accurac..."

  • ...Since a large array gain is essential in such setups, there is currently a lot of research going on concerning the modeling and verification of massive MIMO and/or millimeter wave channels [5], [6] and the question how these models can aid channel estimation [7]....

    [...]

References
More filters
Book
15 Jan 1996
TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Abstract: From the Publisher: The indispensable guide to wireless communications—now fully revised and updated! Wireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design. Building on his classic first edition, Theodore S. Rappaport covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs) that will transform communications in the coming years. Rappaport illustrates each key concept with practical examples, thoroughly explained and solved step by step. Coverage includes: An overview of key wireless technologies: voice, data, cordless, paging, fixed and mobile broadband wireless systems, and beyond Wireless system design fundamentals: channel assignment, handoffs, trunking efficiency, interference, frequency reuse, capacity planning, large-scale fading, and more Path loss, small-scale fading, multipath, reflection, diffraction, scattering, shadowing, spatial-temporal channel modeling, and microcell/indoor propagation Modulation, equalization, diversity, channel coding, and speech coding New wireless LAN technologies: IEEE 802.11a/b, HIPERLAN, BRAN, and other alternatives New 3G air interface standards, including W-CDMA, cdma2000, GPRS, UMTS, and EDGE Bluetooth wearable computers, fixed wireless and Local Multipoint Distribution Service (LMDS), and other advanced technologies Updated glossary of abbreviations and acronyms, and a thorolist of references Dozens of new examples and end-of-chapter problems Whether you're a communications/network professional, manager, researcher, or student, Wireless Communications: Principles and Practice, Second Edition gives you an in-depth understanding of the state of the art in wireless technology—today's and tomorrow's.

17,102 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations


"Investigation of Prediction Accurac..." refers background in this paper

  • ...Emerging 5G communication systems are expected to employ revolutionary technologies [10], potential new spectra [11], and novel architectural concepts [5], [6]; hence, it is critical to develop reliable channel models to assist engineers in the design....

    [...]

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


"Investigation of Prediction Accurac..." refers background or methods in this paper

  • ...Innovative technologies such as multiple-input multiple-output [5]–[7], and new spectrum allocations in the millimeter-wave (mmWave) frequency bands [8], are useful to alleviate the current spectrum shortage [9], and are driving the development of the fifth-generation (5G) wireless communications....

    [...]

  • ...to be mounted closer to obstructions [8], [24]....

    [...]

  • ...macrocell (UMa), and indoor hotspot (InH) scenarios [8],...

    [...]

  • ...and some measurement results are available in [1], [8], [23], and [24]....

    [...]

  • ...Some of the authors of this paper, in fact, originally used d0 values greater than 1 m in past research in order to ensure the model would only be used in the far field of directional antennas [8], [28], [29]; however, they later found a 1-m reference was more suitable for use as a standard, due to the fact that there was very little difference in standard deviation when using a 1-m reference distance (i....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use.
Abstract: An empirical formula for propagation loss is derived from Okumura's report in order to put his propagation prediction method to computational use. The propagation loss in an urban area is presented in a simple form: A + B log 10 R, where A and B are frequency and antenna height functions and R is the distance. The introduced formula is applicable to system designs for UHF and VHF land mobile radio services, with a small formulation error, under the following conditions: frequency range 100-1500 MHz, distance 1-20 km, base station antenna height 30-200 m, and vehicular antenna height 1-10 m.

2,763 citations


"Investigation of Prediction Accurac..." refers background in this paper

  • ...towers were tall without any nearby obstructions, and intersite distances were on the order of many kilometers for those frequency bands [40], [41]....

    [...]